Arxiu anual 30/09/2021

Ciclos técnicos de Formación Profesional

En Centre d’Estudis Edukat te ayudamos a estudiar las asignaturas de los ciclos técnicos de formación profesional (FPro) de química, electricidad, electrónica, etc.

Estamos en Hospitalet de Llobregat.

Las clases son personalizadas en grupos reducidos de 4 ó 5 personas.

Solicitad más información enviando el siguiente formulario:

Formulario de contacto
Servicios *
INFORMACIÓN PROTECCIÓN DE DATOS DE XAVIER MAS i RAMóN (CENTRE D’ESTUDIS EDUKAT)

Finalidades: Responder a sus solicitudes y remitirle información comercial de nuestros productos y servicios, incluso por correo electrónico. Legitimación: Consentimiento del interesado. Destinatarios: No están previstas cesiones de datos. Derechos: Puede retirar su consentimiento en cualquier momento, así como acceder, rectificar, suprimir sus datos y otros derechos a centre.estudis.edukat@ceedukat.es. Información Adicional: Puede ampliar la información en el enlace de Avisos Legales.

Obligatorio
Obligatorio

Cicles tècnics de Formació Professional

A Centre d’Estudis Edukat t’ajudem a estudiar les assignatures dels cicles tècnics de formació professional (química, electricitat, electrònica…).

Som a l’Hospitalet de Llobregat.

Les classes són personalitzades en grups reduïts de quatre o cinc alumnes.

Demaneu més informació enviant el següent formulari:

Formulari de contacte
Serveis
Obligatori
Obligatori

Còniques

1. Definició

Les còniques són les corbes del pla que s’obtenen quan es talla una superfície cònica amb un pla.

L’equació general d’una cònica amb els eixos paral·lels als eixos de coordenades és:

\[Ax²+By²+Cx+Dy+E=0\]

Si \[A=B\], és una circumferència (\[x²+y²+Ax+By+C=0\]).

Si \[A \neq B\] i són del mateix signe, és una el·lipse (\[Ax²+By²+Cx+Dy+E=0\]).

Si \[A \neq B\] i són de signe diferent, és una hipèrbola

\[
Ax²-By²+Cx+Dy+E=0\\
-Ax²+By+Cx+Dy+E=0
\]

Si \[A\] o \[B\] són zero, és una paràbola

\[
Ax²+Bx+Cy+D=0\\
Ay²+Bx+Cy+D=0
\]

Si \[A\] i \[B\] són zero, és una recta (\[Cx+Dy+E=0\]).

Per a calcular la intersecció d’una cònica amb els eixos o amb altres funcions es farà el sistema d’equacions que en resulta.

2. Circumferència

Una circumferència és el conjunt de tots els punts d’un pla la distància dels quals al centre és constant.

\[(x-a)²+(y-b)²=r²\]

Es genera quan una superfície cònica és tallada per un pla horitzontal paral·lel a la base de la superfície cònica.

2.1 Elements de la circumferència:

Els elements d’una circumferència són el centre i el radi.

Podem dibuixar una circumferència amb un centre i un radi o bé amb tres punts.

2.2 Equació general:

\[x²+y²+Ax+By+C=0\]

Per a calcular \[A,B,C\] a partir de l ‘equació reduïda:

\[(x-a)²+(y-b)²=r²\\
(x²-2xa+a²)+(y²-2yb+b²)=r²\\
x^2+y²-2xa-2yb+a²+b²=r^2\\
x²+y²+Ax+By+C=0\\
A=-2a, \; B=-2b, \; C=a²+b²-r²
\]

Per tal que la circumferència existeixi a \[\mathbb{R}\] s’ha de complir que \[(\frac{A}{2})²+(\frac{B²}{2})²-C>0\].

Exemple:

\[
(x-3)²+(y-2)²=9\\
a=3, \; A=-6\\
b=2, \; B=-4\\
C=(-3)²+(2)²-(3)²=4\\
x²+y²-6x-4y+4=0
\]

2.3 Equació reduïda:

\[
C(0,0): x²+y²=r²\\
[C(a,b): (x-a)²+(y-b)²=r²
\]

Per a calcular l’equació reduïda a partir de la general, fem:

  1. Si els coeficients iguals de la \[x\] i la \[y\] són diferents d’\[1\], els reduïm a \[1\] dividint tota l’equació pel valor dels coeficients.
  2. Calculem \[A,B\] i \[r\] .
  3. Escrivim l’equació reduïda i dibuixem la circumferència.
\[
4x²+4y²-24x-16y+16=0\\[1cm]
1.\\
x²+y²-6x-4y+4=0\\[0.5cm]
2.\\
a=-\frac{A}{2}=-\frac{-6}{2}=3\\
b=-\frac{B}{2}=-\frac{-4}{2}=2\\
C=a²+b²-r²\\
4=3²+2²-r²=9\\
-r²=4-9+4\\
r=3\\[0.5cm]
3.\\
(x-3)²+(y-2)²=9
\]

2.4 Potència d’una circumferència

La potència d’un punt P respecte a una circumferència és: \[\overline{PA} \cdot \overline{PB}=d²-r²\]. El punt pot ser exterior, interior o de la circumferència.

Si ens donen un punt i l’equació d’una circumferència, per a calcular al distància d haurem de trobar l’equació de la recta i els punts d’intersecció amb la circumferència fent un sistema d’equacions no lineals. També haurem de recordar els coneixements de vectors en el pla per a calcular les distàncies.

El procediment que hem de seguir és:

  1. Trobem el centre i el radi de la circumferència i determinem si el punt és exterior, interior o de la circumferència.
  2. Calculem l’equació de la recta que passa pel punt P i el punt del centre de la circumferència.
  3. Trobem els punts d’intersecció de la circumferència i la recta.
  4. Calculem la distància d i la potència de P a la circumferència.
\[
1.\\
x²+y²+6x-6y+9=0\\
a=-\frac{A}{2}=-\frac{6}{2}=-3\\
b=-\frac{-6}{2}=-\frac{6}{2}=+3\\
r²=a²+b²-C=(-3)²+(+3)²-9=9, \;r=3\\
C(a,b)=(-3,+3)\\
r=3\\
(x+3)²+(y-3)²=9\\
(+3)²+(+1)²+6 \cdot 3-6 \cdot 1+9=31 \; \text{[31>9, (3,1)és un punt exterior]}
\\[1cm]
2.\\
\vec v_r=(3,1)-(-3,3)=(6,-2)\\
\vec v_{r\perp}=(2,6)\\
r:2x+6y+C=0, P(3,1) \Rightarrow D=-12\\
r:2x+6y-12=0
\\[1cm]
3.\\
\begin{cases}
2x+6y-12=0\\
(x+3)²+(y-3)²=9
\end{cases}\\
(A):x_1= -3+\frac{9}{\sqrt{10}} , \; y_1= +3-\frac{3}{\sqrt{10}} \\
(B):x_2= -3-\frac{9}{\sqrt{10}} , \; y_2= +3+\frac{3}{\sqrt{10}}
\\[1cm]
4.\\
\left| \overline{PA} \right|=\left| (-3+\frac{9}{\sqrt{10}},+3-\frac{3}{\sqrt{10}})-(3,1) \right|=\left| (-6+\frac{9}{\sqrt{10}},+2-\frac{3}{\sqrt{10}}) \right|=3.32 \; u.\\
Potència=d²-r²=(3.32)²-(3)²=2.05 \; u².
\]

2.5 Eix radical

L’eix radical de dues circumferències és el lloc geomètric dels punts que tenen la mateixa potència respecte a cada circumferència. És una recta perpendicular a la recta que uneix el centres de cada circumferència.

L’equació de l’eix radical és:

\[
x² + y^2 +Ax +By +C=0
\\
x² + y^2 +A’x +B’y +C’=0
\\[0.5cm]
x² + y^2 +Ax +By +C=x² + y^2 +A’x +B’y +C’=0
\\
(A-A’)x + (B-B’)y+(C-C’)=0
\]

3. El·lipse

És el lloc geomètric del punts del pla que la suma de les distàncies a dos punts fixos (focus) és constant.

Si \[\overline{PF},\overline{PF’}\] són el radis vectors:

\[
\overline{PF}+\overline{PF’}=2a
\]

Una el·lipse es genera quan una superfície cònica és tallada per un pla que no és paral·lel a la generatriu de la superfície cònica.

3.1 Elements de l’el·lipse

Per a calcular els radis vectors fem:

\[\overline{PF}=a-ex, \; \overline{PF’}=a+ex\]

Per a calcular l’eix secundari fem:

\[b=\sqrt{a²-c²}\]

Per a calcular els vèrtexs d’una el·lipse centrada al \[(0,0)\] fem la intersecció de l’equació de l’el·lipse amb els eixos \[(x=0,\; y=0)\].

3.2 Equació general

\[Ax²+By²+Cx+Dy+E=0\]

3.3 Equació reduïda

Per a obtenir l’equació reduïda a partir de la general i extreure’n els elements de l’el·lipse, fem:

  1. Agrupem el termes amb \[x\] i el termes amb \[y\].
  2. Fem el factor comú de cada agrupació.
  3. Obtenim els quadrats perfectes de cada agrupació.
  4. Calculem l’equació reduïda i la simplifiquem.
  5. N’extraiem els elements.
\[
4x²+9y²-8x+18y-23=0
\\[1cm]
1.\\
(4x²-8x)+(9y²+18y)-23=0
\\[1cm]
2.\\
4(x²-2x)+9(y²+2y)-23=0
\\[1cm]
3\\
x²-2x=(x-1)²-1\\
y²+2y=(y+1)²-1
\\[1cm]
4.\\
4[(x-1)²-1]+9[(y+1)²-1]-23=0\\
4[(x-1)²]+9[(y+1)²]-23-4-9=0\\
4[(x-1)²]+9[(y+1)²]=36\\
\frac{4[(x-1)²]}{36}+\frac{9[(y+1)²]}{36}=\frac{36}{36}\\
\frac{(x-1)²}{9}+\frac{(y+1)²}{4}=1
\\[1cm]
5.\\
C(1,-1)
\\[0.5cm]
c²=a^2-b²=3²-2²=5\\
c=\sqrt{5}\\
F'(1+\sqrt{5},-1), \; F(1-\sqrt{5},-1)
\\[0.5cm]
V_x(1 \pm 3,-1) \Rightarrow (4,-1), \; (-2,-1)\\
V_y(1,-1 \pm 2) \Rightarrow (1,1), \; (1,-3)\\
\]

Segons la posició i el centre de l’el·lipse, els focus, els vèrtexs i l’equació reduïda seran:

3.3.1 Horitzontal


3.3.1.1 C(0,0)

\[
F(-c,0),\; F'(+c,0)\\
V_x(\pm a,0), \; V_y(0,\pm b)\\
\frac{x²}{a²}+\frac{y²}{b²}=1\]

3.3.1.2 C(x0, y0)

\[
F(x_0-c,y_0),\; F'(x_0+c,y_0)\\
V_x(x_o \pm a,0), \; V_y(x_0,y_o\pm b)\\
\frac{(x-x_0)²}{a²}+\frac{(y-y_0)²}{b²}=1
\]

3.3.2 Vertical


3.3.2.1 C(0,0)

\[
F(0,-c),F'(0,+c)\\
V_x(\pm b,0), \; V_y(x_0,\pm a)\\
\frac{x²}{b²}+\frac{y²}{a²}=1
\]

3.3.2.2 C(x0, y0)

\[
F'(x_0,y_0-c),F(x_0,y_0+c)\\
V_x(x_0\pm b,y_0), \; V_y(x_0,y_0 \pm a)\\
\frac{ (x-x_0)²}{b²}+\frac{(y-y_0)²}{a²}=1
\]

4. Hipèrbola

És el lloc geomètric dels punts del pla que fan que la diferència de les distàncies a dos punts fixos (focus) sigui constant \[2a\].

\[\overline{PF}-\overline{PF’}=2a\]

S’obté una hipèrbola quan un pla talla verticalment dues superfícies còniques oposades pel vèrtex:

4.1 Elements d’una hipèrbola

A l’eix principal l’anomenem eix real i a l’eix secundari eix imaginari.

Per a calcular els radis vectors d’una hipèrbola, fem:

\[\overline{PF}=\left|ex-a\right|, \; \overline{PF’}=\left|ex-a\right|\]

Els vèrtexs d’una hipèrbola amb \[C(0,0)\] es calculen fent la intersecció del eixos amb la hipèrbola \[x=0, \; y=0\].

Les asímptotes es calculen fent:

\[y=\pm \frac{b}{a}x\]


4.2 Equació general

\[
Ax²-By²+Cx+Dy+E=0\\
-Ax²+By²+Cx+Dy+E=0
\]


4.3 Equació reduïda

Per a calcular l’equació reduïda d’una hipèrbola a partir de la general, fem:

  1. Agrupem el termes amb \[x\] i el termes amb \[y\].
  2. Fem el factor comú de cada agrupació.
  3. Obtenim els quadrats perfectes de cada agrupació.
  4. Calculem l’equació reduïda i la simplifiquem.
  5. N’extraiem els elements.
\[
4x²-9y²-8x+36y+4=0\\[1cm]
1.\\
(4x²-8x)-(9y²-36y)+4=0\\
2.\\
4(x²-2x)-9(y²-4y)+4=0\\
3.\\
x²-2x=(x-1)²-1\\
y²-4y=(y-2)²-4\\
4.\\
4(x-1)²-9(y-2)²=-36\\
\frac{4(x-1)²}{-36}-\frac{9(y-2)²}{-36}=1\\
\frac{(x-1)²}{-9}-\frac{(y-2)²}{-4}=1\\
\frac{(y-2)²}{4}-\frac{(x-1)²}{9}=1\\[1cm]
5.\\
C(1,2)\\
a=2, \;b=3, \; c=\sqrt{a²+b²}=\sqrt{13}\\
V(1,2\pm 2)=(1,0), \;(1,4)\\
F(1,2+\sqrt{13}), \; F'(1,2-\sqrt{13})\\
(y-2)²=\frac{4}{9}(x-1)² \Rightarrow y=\pm \frac{2}{3}(x-1)+2\\
y=\frac{2}{3}x+\frac{4}{3}\\
y=-\frac{2}{3}x+\frac{8}{3}
\]

Segons la posició i el centre de la hipèrbola, els focus, els vèrtexs i l’equació reduïda seran:


4.3.1 Horitzontal

4.3.1.1 C(0,0)

\[
C(0,0)\\
F(x_0-c,y_0),F'(x_0+c,y_0)\\
V_x(x_0\pm a,y_0)\\
\frac{(x-x_0)²}{a²}+\frac{(y-y_0)²}{b²}=1
\]

4.3.1.2 C(x0,y0)

\[
C(x_0,y_0)\\
F(x_0-c,y_0),F'(x_0+c,y_0)\\
Vx(x_0 \pm a, y_0)\\
\frac{(x-x_0)²}{a²}+\frac{(y-y_0)²}{b²}=1
\]

4.3.2 Vertical

4.3.2.1 C(0,0)

\[
C(0,0)\\
F(0,-c),F'(0,+c)\\
V_y(0,\pm a)\\
\frac{(x-x_0)²}{b²}+\frac{(y-y_0)²}{a²}=1
\]

4.3.2.2 C(x0,y0)

\[
C(x_0,y_0)\\
F(x_0,y_0-c),F'(x_0,y_0+c)\\
V_y(x_0,y_0 \pm a)\\
\frac{(x-x_0)²}{b²}+\frac{(y-y_0)²}{a²}=1
\]

5. Paràbola

Una paràbola és el lloc geomètric dels punts del pla que equidisten del focus i de la directriu:

\[y²=2px\] \[
d(F,P)=\sqrt{(x-\frac{p}{2})²+y²}\\
d(P,d)=\left|x+\frac{p}{2}\right|\\
\sqrt{(x-\frac{p}{2})²+y²}=\left|x+\frac{p}{2}\right|\\
y²=2px
\]

Una paràbola s’obté tallant de forma obliqua una superfície cònica.

5.1 Elements de la paràbola

La distància del focus a la directriu s’anomena paràmetre.

L’eix és la recta que passa pel focus i és perpendicular a la directriu.

El vèrtex és el punt d’intersecció de la paràbola amb l’eix.

5.2 Equació general

\[
Ax²+Bx+Cy+D=0\\
Ay²+Bx+Cy+D=0
\]
  1. Separarem els termes amb \[x\] dels termes amb \[y\] i dividirem tota l’equació pel coeficient del terme quadrat.
  2. Farem el quadrat perfecte del terme quadrat i susbstituirem l’expressió calculada a l’equació anterior.
  3. Calcularem l’equació de la paràbola transformant l’expressió del punt anterior en una la forma \[(y-y_0)²=\pm 2p(x-x_0)\], o bé de la forma \[(x-x_0)²=\pm 2p(y-y_0)\] extraent el factor comú del coeficient \[ x\] o \[y\] de primer grau de la dreta de la igualtat.

    Si l’equació té un terme \[y²\], la transformarem en una de la primera forma. Si té un terme \[x²\], la transformarem en una equació de la segona forma.
  4. Definirem els elements de la paràbola i en calcularem un parell de punts per a poder dibuixar-la.

\[
2x²+8x+3y-5=0
\\[1cm]
1.\\
2x²+8x=-3y+5\\
x²+4x=-\frac{3}{2}+\frac{5}{2}
\\[1cm]
2. \\
x²+4x=(x+2)²-4
\\[1cm]
3.\\
(x+2)²-4=-\frac{3}{2}y+\frac{5}{2}\\
(x+2)²=-\frac{3}{2}y+\frac{13}{2}\\
(x+2)²=-\frac{3}{2}(y-\frac{13}{3}) \enspace [(x-x_o)²=\pm 2p(y-y_0)]
\\[1cm]
4.\\
x_0=-2, \; y_0=\frac{13}{3}\\
-2p=-\frac{3}{2} \Rightarrow p=\frac{3}{4}\\
V(-2,\frac{13}{3})\\
F(-2,\frac{13}{3}-\frac{3}{8})=(-2,\frac{95}{24})\\
y=\frac{13}{3}+\frac{3}{8}=\frac{113}{24} \text{ (directriu)}\\
(x+2)=\pm \sqrt{\frac{39}{6}} \; \text{( y=0)}\\
x=0.55, \; -4.56
\]

5.3 Equació reduïda

Segons si la paràbola té el vèrtex a \[V(0,0)\] i si la posició és vertical o horitzontal, la posició del focus, del vèrtex i l’equació reduïda serà:

5.3.1 Horitzontal V(0,0)

5.3.1.1 Focus a la dreta:

\[
F(\frac{p}{2},0)\\
y²=+2px
\]

5.3.1.2 Focus a l’esquerra

\[
F(-\frac{p}{2},0)\\
y²=-2px
\]

5.3.2 Vertical V(0,0)

5.3.2.1 Focus per sobre de l’eix

\[
F(0,\frac{p}{2})\\
x²=+2px
\]

5.3.2.2 Focus per sota de l’eix

\[
F(0,-\frac{p}{2})\\
x²=-2px
\]

5.3.3 Horitzontal (x0,y0)

5.3.3.1 Focus a la dreta

\[
F(x_0+\frac{p}{2},0)\\
(y-y_0)²=+2p(x-x_0)
\]

5.3.3.2 Focus a l’esquerra

\[
F(x_0-\frac{p}{2},0)\\
(y-y_0)²=-2p(x-x_0)
\]


5.3.4 Vertical (x0,y0)

5.3.4.1 Focus per sobre de l’eix:

\[
F(x_0,y_0+\frac{p}{2})\\
(x-x_0)²=+2p(y-y_0)
\]


5.3.4.2 Focus per sota de l’eix:

\[
F(x_0,y_0-\frac{p}{2})\\
(x-x_0)²=-2p(y-y_0)
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Geometria a l’espai

1. Definició

La geometria (del grec, “mesura de la Terra) és la parts de les matemàtiques que estudia les relacions entre els elements que la formen (punt, recta, pla, angles i figures) i la manera de calcular-les.

Els elements de la geometria analítica a l’espai són el punt, la recta i el pla i els angles.

2. Vectors a l’espai

Vegeu Vectors en el pla per a saber-ne més.

2.1 Producte vectorial

El producte vectorial de dos vectors és un altre vector perpendicular al pla que formen aquests dos vectors. El sentit del vector del producte vectorial es pot determinar amb la regla de la mà dreta.

El mòdul del vector resultant del producte vectorial de dos vectors representa l’àrea tancada per aquests vectors.

El producte vectorial no és commutatiu.

Per a calcular el producte vectorial de dos vectors farem el següent determinant:

\[
\vec u_1=x_1 \cdot \vec i + y_1 \cdot \vec j + z_1 \cdot \vec k\\
\vec u_2=x_2 \cdot \vec i + y_2 \cdot \vec j + z_2 \cdot \vec k\\
\vec u_1 \times \vec u_2=\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}=\\
\vec i(y_1z_2-y_2z_1) – \vec j(x_1z_2-x_2z_1) + \vec k(x_1y_2-x_2y_1)
\]

Exemple:

\[
\vec {u_1}=(-5,3,1)\\
\vec {u_2}=(1,2,-4)\\
\vec {u_1} \times \vec {u_2}=\begin{vmatrix} i & j & k \\ -5 & 3 & 1 \\ 1 & 2 & -4 \end{vmatrix}=\\
\vec i(3 \cdot-4-2 \cdot 1) -\vec j(-5 \cdot -4-1 \cdot 1) + \vec k(-5 \cdot 2-1 \cdot 3)\\
\vec {u_3}=\vec i(-14) – \vec j(19) + \vec k(-13)\\
A=|\vec {u_3}|=\sqrt{(-14)² +(-19)² + (-13)²}=26.94 \; u²\\
\]

2.2 Producte mixt

El producte mixt de tres vectors \[[u,v,w]\] s’obté multiplicant escalarment el primer vector pel producte vectorial del segon i el tercer. També es pot calcular fent el determinat dels tres vectors. Representa el volum tancat per aquests tres vectors.

\[
\vec u_1=x_1 \cdot \vec i + y_1 \cdot \vec j + z_1 \cdot \vec k\\
\vec u_2=x_2 \cdot \vec i + y_2 \cdot \vec j + z_2 \cdot \vec k\\
\vec u_3=x_3 \cdot \vec i + y_3 \cdot \vec j + z_3 \cdot \vec k\\
\vec u_1 \cdot (\vec u_2 \times \vec u_3)=\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}
\]

Exemple:

\[
\vec u_1=2 \cdot \vec i + 3 \cdot \vec j + 1 \cdot \vec k\\
\vec u_2=-5 \cdot \vec i + 3 \cdot \vec j + 1 \cdot \vec k\\
\vec u_3=1 \cdot \vec i + 2 \cdot \vec j + 4 \cdot \vec k\\
V=\begin{vmatrix} 2 & 3 & 1 \\ -5 & 3 & 1 \\ 1 & 2 & 4 \end{vmatrix}=70 \; u³
\]

3. Equació de la recta

\[
(x,y,z)=(x_0,y_0,z_0)+t(u_1,u_2,u_3)\\
x=x_0+ t \cdot u_1\\
y=y_0+ t \cdot u_2\\
z=z_0+ t \cdot u_3\\
t=\frac{x-x_0}{u_1}=\frac{y-y_0}{u_2}=\frac{z-z_0}{u_3}\\[0.5cm]
u_2(x-x_0)=u_1(y-y_0)\\
u_3(y-y_0)=u_2(z-z_0)\\[0.5cm]
u_2x-u_2x_0-u_1y+u_1y_0=0\\
u_3y-u_3y_0-u_2z+u_2z_0=0\\[0.5cm]
u_2x-u_1y+(-u_2x_0+u_1y_0)=0\\
u_3y-u_2z+(-u_3y_0+u_2z_0)=0\\[0.5cm]
\begin{cases}
\pi_1: A_1x+B_1y+C_1z+D_1=0\\
\pi_2:A_2x+B_2y+C_2z+D_2=0
\end{cases}
\]

(Vegeu Equacions de la recta de Geometria en el pla per a saber-ne més).

4. Equació del pla

Per a definir tots els punts d’un pla ens calen tres punts o dos vectors i un punt.

Si \[O\] és l’origen de coordenades del sistema de referència, \[\vec u_1, \vec u_2\] són els dos vectors del pla de referència, \[P\] és un punt del pla de referència i \[X\] és el punt que volem definir, l’equació vectorial del pla amb dos vectors i un punt és: \[\vec {OX}=\vec{OP}+\vec{PX}\].

\[
(x,y,z)=(x_0,y_0,z_0)+t(u_1,u_2,u_3)+s(v_1,v_2,v_3)\\
x-x_0=t \cdot u_1+ s \cdot v_1\\
y-y_0=t \cdot u_2+ s \cdot v_2\\
z-z_0=t \cdot u_3+ s \cdot v_3\\[1cm]
\pi: \begin{vmatrix} x-x_0 & y-y_0 & z-z_0 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}=0\\[1cm]
(x-x_0) \cdot \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}

(y-y_0) \cdot \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}
+
(z-z_0) \cdot \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}\\
(x-x_0)(u_2v_3-v_2u_3)-(y-y_0)(u_1v_3-v_1u_3)+(z-z_0)(u_1v_2-v_1u_2)\\
x(u_2v_3-v_2u_3)-y(u_1v_3-v_1u_3)+z(u_1v_2-v_1u_2)+\\
-x_0(u_2v_3-v_2u_3)+y_0(u_1v_3-v_1u_3)-z_0(u_1v_2-v_1u_2)=0\\[1cm]
\pi:Ax+By+Cz+D=0
\]

El vector \[(A,B,C)\] de l’equació general és el vector normal de pla (vector lliure perpendicular a una recta, pla, o a un corba qualsevol):

\[\vec n(A,B,C)\]

Exemple:

\[
(x,y,z)=(2,3,1)+t(-5,3,1)+s(1,2,4)\\
x-2=-5t+1s\\
y-3=3t+2s\\
z-1=1t+4s\\[0.5cm]
(x-2) \cdot \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix}
(y-3) \cdot \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix}
+
(z-1) \cdot \begin{vmatrix} -5 & 3 \\ 1 & 2 \end{vmatrix}=0\\
(x-2) \cdot 10-(y-3) \cdot -21+(z-1) \cdot -13=0\\[0.5cm]
\pi:10x+21y-13z+36=0
\]

Si tenim tres punts, \[A,B,C\], calcularem dos vectors (\[\vec{AB}, \vec{AC}\], per exemple) i l’equació general del pla serà :

\[
\begin{vmatrix} x-x_0 & y-y_0 & z-z_0 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}=0
\]

4.1 Feix de plans

Definim un feix de plans a partir de dos plans que formen la recta d’intersecció comuna de tot els plans del feix (aresta del feix):

\[
r:
\begin{cases}
A_1x+B_1y+C_1z+D_1=0 \\
A_2x+B_2y+C_2z+D_2=0 \\
\end{cases}
\\[1cm]
\alpha(A_1x+B_1y+C_1z+D_1)+\beta(A_2x+B_2y+C_2z+D_2)=0
\]

És a dir que, l’equació del feix de plans és la combinació lineal dels dos plans que determinen la recta \[r\].

Si \[\alpha\] és zero, tenim l’equació del segon pla, i si \[\beta\] és zero tenim la del primer pla.

També es pot definir l’equació del feix com:

\[
\frac{\alpha} {\alpha}(A_1x+B_1y+C_1z+D_1)+\frac {\beta} {\alpha} (A_2x+B_2y+C_2z+D_2)=0\\
(A_1x+B_1y+C_1z+D_1)+\gamma (A_2x+B_2y+C_2z+D_2)=0
\]

Exemple:

\[
r:
\begin{cases}
-5x+3y+1z+3=0 \\
1x+2y+4z-2=0 \\
\end{cases}
\\[1cm]
\alpha(-5x+3y+1z+3)+\beta(1x+2y+4z-2)=0
\]

5. Posicions relatives

Podem estudiar la posició relativa de rectes i plans comparant-ne, o bé els punts i vectors, o bé comparant els rangs de les matrius formades amb les equacions generals de les rectes.

Si tenim l’equació general d’una recta però ens cal un vector i un punt, haurem de calcular-ne les equacions vectorial, paramètrica o continua.

Per a calcular l’equació paramètrica d’una recta si en tenim la general, farem:

  1. Assignarem a alguna de les variables, per exemple la zeta, el paràmetre \[\lambda\]. Aquesta variable (o el paràmetre \[\lambda\]) serà la variable independent del sistema d’equacions indeterminat.
  2. Resoldrem el sistema d’equacions indeterminat per reducció eliminant la \[x\] per a obtenir la \[y\] en funció de \[z\].
  3. Resoldrem el sistema d’equacions indeterminat eliminant la \[y\] per a obtenir \[x\] en funció de \[z\].
    També podem resoldre els passos 2 i 3 resolent el sistema d’equacions per Gauss o Crammer.
  4. Agruparem les equacions resultants i obtenim l’equació paramètrica de la recta. Fent les operacions habituals de l’apartat 3 podem obtenir qualsevol altre equació de la recta.
\[
\begin{cases}
\pi_1:4x-8y+5z=7\\
\pi_2:x-9y+z=6
\end{cases}\\
1. z=\lambda\\
2. y=-\frac{17}{28}-\frac{1}{28}\lambda\\
3. x=\frac{15}{28}-\frac{37}{28}\lambda\\
4. \begin{cases}
x=\frac{15}{28}-\frac{37}{28}\lambda\\
y=\frac{17}{28}-\frac{1}{28}\lambda\\
z=\lambda
\end{cases}
\]

Per a calcular l’equació general d’una recta si en tenim la paramètrica o continua farem com en l’exemple anterior els passos habituals per obtenir les diferents equacions d’una recta:

\[
\begin{cases}
x=2-3\lambda\\
y=5+5\lambda\\
z=-1-4\lambda
\end{cases}\\
\lambda=\frac{x-2}{-3}=\frac{y-5}{5}=\frac{z+1}{-4}\\
5(x-2)=-3(y-5)\\
5x+3y-25=0\\
-4(y-5)=5(z+1)\\
-4y-5z+15=0\\
r:
\begin{cases}
5x+3y-25=0\\
-4y-5z+15=0
\end{cases}
\]

Per a calcular sols el vector d’una recta si en tenim l’equació general farem el producte vectorial del vectors normals de les equacions generals dels plans:

\[
\begin{cases}
\pi_1:4x-8y+5z=7\\
\pi_2:x-9y+z=6
\end{cases}\\
\vec {n_1}=(4,-8,5), \; \vec {n_2}=(1,-9,1)\\
\vec v_r=\vec {n_1} \times {\vec n_2}\\
\begin{vmatrix}i & j & k \\ 4 & -8 & 5 \\ 1 & -9 & 1 \end{vmatrix}\\
\vec i {(-8+45)}-\vec j {(4-5)}+\vec k {(-36+8)}\\
\vec {v_r}=37 \vec i+1 \vec j -28 \vec k
\]

5.1 Recta-recta

Si usem un vector \[\vec v\] i un punt de cada recta (\[P_r,P_s\]):

Posició relativaComparació punts i vectors
Coincidents\[\frac{\vec u_1}{\vec v_1}=\frac{\vec u_2}{\vec v_2}=\frac{\vec u_3}{\vec v_3} \; i \; P_r=P_s\]
Paral·leles\[\frac{\vec u_1}{\vec v_1}=\frac{\vec u_2}{\vec v_2}=\frac{\vec u_3}{\vec v_3} \; i \; P_r \neq P_s\]
Secants\[\frac{\vec u_1}{\vec v_1} \neq \frac{\vec u_2}{\vec v_2} \neq \frac{\vec u_3}{\vec v_3}\] i \[det(D)=0\]
S’encreuen\[\frac{\vec u_1}{\vec v_1} \neq \frac{\vec u_2}{\vec v_2} \neq \frac{\vec u_3}{\vec v_3}\] i \[det(D) \neq 0\]

Farem servir les equacions vectorial, paramètrica o continua per a determinar el vector i el punt de cada recta.

\[
r: (x,y,z)=(x_r,y_r,z_r)+ \lambda(v_{r1},v_{r2}, v_{r3})\\
s:(x,y,z)=(x_s,y_s,z_s)+ \lambda(v_{s1},v_{s2}, v_{s3})\\
r:\begin{cases}
x=x_r+ \lambda \cdot v_{r1}\\
y=y_r+ \lambda \cdot v_{r2}\\
z=z_r+ \lambda \cdot v_{r3}\\
\end{cases}\\[1cm]
s:\begin{cases}
x=x_s+ \mu \cdot v_{s1}\\
y=y_s+ \mu \cdot v_{s2}\\
z=z_s+ \mu \cdot v_{s3}\\
\end{cases}\\
\frac{x-x_0}{v_{r1}}=\frac{y-y_0}{v_{r2}}=\frac{z-z_0}{v_{r3}}\\
\frac{x-x_0}{v_{s1}}=\frac{y-y_0}{v_{s2}}=\frac{z-z_0}{v_{s3}}\\
\vec v_r:(v_{r1},v_{r2},v_{r3}), \; P_r(x_r,y_r,z_r)\\
\vec v_s:(v_{s1},v_{s2},v_{s3}), \; P_r(x_s,y_s,z_s)
\]

Si les rectes són coincidents, els vectors directors seran paral·lels i tindran els mateixos punts.

Si són paral·leles, els vectors directors seran paral·lels però tindran punts diferents.

Si les rectes són secants, els vectors directors no seran paral·lels i el determinant \[D\] dels dos vectors i el vector \[(x_2-x_1,y_2-y_1,z_2-z_1)\] serà zero.

\[
D=\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}=0
\]

Si les rectes s’encreuen, els vectors directors no seran paral·lels i el determinant \[D\] dels dos vectors i el vector \[(x_2-x_1,y_2-y_1,z_2-z_1)\] serà diferent de zero:

\[
D=\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \neq 0
\]

Exemple:

\[
r: (x,y,z)=(2,3,1))+t(-5,3,1)\\
s:
\begin{cases}
x=3+1s\\
y=4+2t\\
z=5+4s
\end{cases}\\
P_r=(2,3,1), \; v_r=(-5,3,1)\\
P_s=(3,4,5), \; v_s=(1,2,4)\\
\frac{-5}{1} \neq \frac{3}{2} \neq \frac{1}{4}\\
\begin{vmatrix}3-2 & 4-3 & 5-1 \\-5 & 3 & 1 \\1 & 2 & 4 \end{vmatrix}=-21\\[1cm]
\text{Per tant, les dues rectes s’encreuen.}
\]

Per a analitzar la posició relativa comparant els rangs de les matrius de coeficients i ampliada hem d’usar les equacions generals de les dues rectes:

Posició relativaRang matriu coeficients(*)Rang matriu ampliada(*)
Coincidents34
Paral·leles23
Secants33
S’encreuen34
\[
r:
\begin{cases}
3x+5y-21=0\\
y-3z=0
\end{cases}\\
s:
\begin{cases}
2x-y-2=0\\
4y-2z-6=0
\end{cases}\\[1cm]
\text{Matriu de coeficients (A)}=
\begin{vmatrix}
3 & 5 & 0 \\ 0 & 1 & -3 \\ 2 & -1 & 0 \\ 0 & 4 & -2
\end{vmatrix}\\
\text{Matriu ampliada (A*)}=
\begin{vmatrix}
3 & 5 & 0 & 21 \\ 0 & 1 & -3& 0\\ 2 & -1 & 0 & 2 \\ 0 & 4 & -2 & 6
\end{vmatrix}\\[1cm]
\text{Rang A}=3\\
\text{Rang A*}=4\\[1cm]
\text{Per tant, s’encreuen}
\]

5.2 Exercicis

5.2.1 Projecció d’una recta sobre un pla

Per a calcular la projecció d’una recta sobre un pla, fem:

  1. Calculem el vector normal del pla que conté la recta (\[\pi_2\]) fent el producte vectorial del vector de la recta i el vector normal del pla de projecció (tots dos són vectors del pla que conté la recta).
  2. Calculem el terme independent \[D\] de \[\pi_2\] usant el punt de la recta que també és un punt d’aquest pla.
  3. L’equació de la recta projectada és la formada per les equacions generals dels dos plans.
\[
r:
\begin{cases}
x=1+5\lambda\\
y=-2-2\lambda\\
z=\lambda
\end{cases}
\\[1cm]
\pi_1:30x+2y-z+9=0
\\[1cm]
1.
\\
\vec n_2=\vec v_r \times \vec n_1\\
\vec n_2=(5,-2,1) \times (30,2,-1)=(0,35,70)
\\[1cm]
2.
\\
\pi_2:0x+35y+70z+D=0\\
\pi_2:0 \cdot 1+35 \cdot -2+70 \cdot 0+D=0, \; D=70\\
\\
\pi_2:35y+70z+70=0
\\[1cm]
3.
\\t:
\begin{cases}
\pi_1:30x+2y-z+9=0\\
\pi_2:35y+70z+70=0
\end{cases}
\]

5.2.2 Recta perpendicular a dues rectes que s’encreuen

El procediment és:

  1. Expressem genèricament un punt de cada recta (\[P_r,P_s\]) i calculem el vector entre aquests dos punts (\[\vec {P_rP_s}\]).
  2. Aquest vector ha de ser perpendicular a les rectes que s’encreuen, per tant el producte escalar amb els vectors de les rectes ha de ser zero.
  3. Resolent el sistema d’equacions trobem el valor dels paràmetres de cada recta que fan que la recta \[t:\] sigui perpendicular i en calculem un vector perpendicular.
  4. Fem passar la recta perpendicular \[t:\] per un dels punts del vector \[P_r,P_s\] i tenim l’equació de la recta perpendicular a dues rectes que s’encreuen.
\[
r:
\begin{cases}
x=4+2\lambda\\
y=1-\lambda\\
z=-2+3\lambda
\end{cases}
\\[1cm]
s:
\begin{cases}
x=1+\mu\\
y=-2-2\mu\\
z=8+2\mu
\end{cases}
\\[1cm]
1.
\\
P_r:(4+2\lambda,1-\lambda,-2+3\lambda)\\
P_s:(1+\mu,-2-2\mu,8+2\mu)\\
\vec {P_rP_s}={[(4+2\lambda)-(1+\mu)],[(1-\lambda)-(-2-2\mu)],[(-2+3\lambda)-(8+2\mu)]}=\\
(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu)\\[1cm]
2.
\\
\vec {P_rP_s} \cdot \vec v_r=0\\
(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu) \cdot (2,-1,3)=0\\
-27+14\lambda-10\mu=0\\
\vec {P_rP_s} \cdot \vec v_s=0\\
(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu) \cdot (1,-2,2)=0\\
-23+10\lambda-9\mu=0
\\[1cm]
3.
\\
\begin{cases}
-27+14\lambda-10\mu=0\\
-23+10\lambda-9\mu=0
\end{cases}\\
\lambda=\frac{1}{2}, \; \mu=-2
\\
\vec {P_rP_s}=(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu)=(2,-\frac{3}{2},-\frac{13}{2})\\
\\[1cm]
4.
\\
t:
\begin{cases}
x=4+2\cdot \psi\\
y=1-\frac{3}{2} \cdot \psi\\
z=-2 -\frac{13}{2} \cdot \psi
\end{cases}
\]

5.2.3 Recta que passa per un punt que talla a dues rectes

És la recta formada per cada un dels dos plans \[\pi_1,\pi_2\] que contenen a \[r,s\] respectivament i que passa per \[P\]. Per a calcular l’equació d’aquesta recta hem de trobar les equacions dels plans que contenen a \[r:, s:, \; i \; P\]:

  1. Calculem el vector normal de \[\pi_1\] fent el producte vectorial del vector de la recta \[r:\] i el vector \[\vec {PP_r}\].
  2. Calculem el vector normal de \[\pi_2\] fent el producte vectorial del vector de la recta \[s:\] i el vector \[\vec {PP_s}\].
  3. Calculem els plans \[\pi_1,\pi_2\] amb les vectors normals i el punt \[P\].
  4. L’equació de la recta és la formada per les equacions generals dels dos plans.
\[
P(2,3,4)\\
r:
\begin{cases}
x=5-\lambda\\
y=-6+5\lambda\\
z=1+2\lambda
\end{cases}
\\
\vec v_r=(-1,5,2),P_r=(5,-6,1),
\\[1cm]
s:
\begin{cases}
x=1+2\lambda\\
y=-6+\lambda\\
z=3+3\lambda\\
\end{cases}
\\
\vec v_s=(2,1,3),P_s=(1,-6,3)
\\[1cm]
1.
\\\vec {PP_r}=P_r-P=(5,-6,1)-(2,3,4)=(3,-9,-3)\\
\vec n_1=(-1,5,2) \times(3,-9,-3)=(3,3,-6)\\[1cm]
2. \\
\vec {PP_s}=P_s-P=(1,-6,3)-(2,3,4)=(-1,-9,-1)\\
\vec n_2=(2,1,3) \times (-1,-9,-1)=(26,-1,-17)\\[1cm]
3.
\\
\pi_1:3x+3y–6z+D_1=3 \cdot 2+3 \cdot 3-6 \cdot 4+D_1=0,D_1=9\\
\pi_2:26x-1y-17z+D_2=26 \cdot 2-1 \cdot 3-17 \cdot 4+D_2=0,D_2=+19
\\[1cm]
4.
\\t:
\begin{cases}
\pi_1:3x+3y-6z+9=0\\
\pi_2:26x-1y-17z+19=0
\end{cases}
\]

5.3 Recta-pla

Per a determinar la posició relativa d’una recta i un pla comparant punts i vectors usarem les equacions vectorial, paramètrica o continua de la recta i l’equació general del pla. Per fer-ho amb rangs, ens calen les equacions generals de la recta i del pla.

\[
r:
(x,y,z)=(x_r,y_r,z_r)+\lambda(v_{r1},v_{r2},v_{r3})\\
r:\begin{cases}
x=x_r+ \lambda \cdot v_{r1}\\
y=y_r+ \lambda \cdot v_{r2}\\
z=z_r+ \lambda \cdot v_{r3}\\
\end{cases}\\
\frac{x-x_0}{v_{r1}}=\frac{y-y_0}{v_{r2}}=\frac{z-z_0}{v_{r3}}\\
v_r(v_{r1},v_{r2},v_{r3}), \; P_r(x_r,y_r,z_r)\\[1cm]
\pi: A_1x+B_1y+C_1z+D_1=0\\
\vec n=(A,B,C)
\]
Posició relativaComparació punts i vectors
Recta continguda en el pla\[\vec v_r \cdot \vec n=0\; i \; P_r \in \pi\]
Recta i pla paral·lels\[\vec v_r \cdot \vec n=0\; i \; P_r \notin \pi\]
Recta i pla secants\[\vec v_r \cdot \vec n \neq 0\]
Posició relativaRang matriu coeficients(*)Rang matriu ampliada(*)
Recta continguda en el pla22
Recta i pla paral·lels23
Recta i pla secants33

Si la recta està continguda en el pla, el producte escalar del vector de la recta i el normal del pla serà zero i els punts de la recta són punts del pla. Per a saber si un punt de la recta és també un punt del pla el substituirem a l’equació del pla:

Exemple:

\[
r:
\begin{cases}
x=2-5\lambda\\
y=3+3\lambda\\
z=1+\lambda
\end{cases}\\
v_r(-5,3,1), \; P_r(2,3,1)\\[1cm]
\pi:2x+4y-2z-14=0\\
\vec n(2,4,-2)\\[1cm]
\vec v_r \cdot \vec n=(-5,3,1) \cdot (2,4,-2)=-5 \cdot 2+3 \cdot 4-1 \cdot 2=-10+12-2=0\\
\pi(2,3,1)=2 \cdot 2+4 \cdot 3 -2 \cdot 1-14=4+12-2-14=0\\[1cm]
\text{El pla i la recta són paral·lels i la recta està continguda en el pla.}
\]

Si la recta i el pla són paral·lels, el producte escalar dels dos vectors serà zero, però els punts de la recta i del pla són diferents:

\[
r:
\begin{cases}
x=2-5\lambda\\
y=4+3\lambda\\
z=3+\lambda
\end{cases}
\Rightarrow r:
\begin{cases}
3x+5y-26=0\\
x+5z-17=0
\end{cases}\\
\pi:4x+6y+2z-28=0\\[1cm]
\vec v_r(-5,3,1), \; P_r(2,4,3)\\
\vec n_\pi(4,6,2)\\[1cm]
\vec v_r \cdot \vec n_\pi=(-5,3,1) \cdot (4,6,2)=-20+18+2=0 \text{ (Recta i pla són paral·lels)}\\
\pi(2,4,3):4 \cdot 2+6 \cdot 4+2 \cdot 3-28=10 \text{ (Els punts de la recta no śon del pla)}\\[1cm]
\text{Per tant, la recta i el pla són paral·lels}\\[1cm]
\text{Matriu A}=\begin{bmatrix}3 & 5 & 0 \\ 1 & 0 & 5 \\ 4 & 6 & 2 \end{bmatrix}\\
\text{Matriu A*}=\begin{bmatrix}3 & 5 & 0 & 26 \\ 1 & 0 & 5 & 17 \\ 4 & 6 & 2 & 28\end{bmatrix}\\
\text{Rang A}=2 \\
\text{Rang A*}=3 \\
\text{Per tant, la recta i el pla són paral·lels}
\]

Si el pla i la recta són secants , la recta tallarà el pla en un punt (Q). Q serà el punt que resulta de fer el sistema d’equacions generals de la recta i el pla.

\[
r:
\begin{cases}
2x-7y+8z=3\\
3x+5y-z=7
\end{cases}\\
\pi:x+3y-4z=0\\
\begin{bmatrix}2 & -7 & 8 & 3 \\ 3 & 5 & -1 & 7 \\ 1 & 3 & -4 & 0\end{bmatrix}\\
x=1 ,\; y=1 , \; z=1 \\
Q=(1,1,1)
\]

5.4 Pla-pla

Per a determinar la posició relativa de dos plans determinarem els rangs de les equacions generals del plans, o bé compararem els vectors i els punts de cada pla:

Posició relativaComparació punts i vectors
Coincidents\[\frac{A_1}{B_1}=\frac{A_2}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}\]
Paral·lels\[\frac{A_1}{B_1}=\frac{A_2}{B_2}=\frac{C_1}{C_2} \neq \frac{D_1}{D_2}\]
Secants\[\frac{A_1}{B_1} \neq \frac{A_2}{B_2} \neq \frac{C_1}{C_2}\]
Posició relativaRang matriu coeficients(*)Rang matriu ampliada(*)
Coincidents11
Paral·lels12
Secants22
\[
\pi_1: A_1x+B_1y+C_1z+D_1=0\\
\pi_2:A_2x+B_2y+C_2z+D_2=0
\]
Plans coincidents
Plans paral·lels
Plans secants

5.4.1 Plans bisectors

Un pla bisector és un pla que passa per l’aresta d’un angle dièdric i el divideix en dos angles iguals. Un angle dièdric és una regió de l’espai compresa entre dos semiplans que tenen la mateixa recta, anomenada aresta de l’angle dièdric.

Per a calcular els dos plans bisectors que formen l’angle dièdric, farem:

\[
d=\left| \frac{Ax_1+By_1+Cz_1+D_1}{\sqrt{A_1²+B_1²+C_1}²} \right|=\pm \frac{Ax_2+By_2+Cz_2+D_2}{\sqrt{A_2²+B_2²+C_2²}}
\]

Exemple:

\[
P(x_0,y_0,z_0)\\
\pi_1:2x+3y-4z-6=0\\
\pi_2:-3x+4y-2z=0\\[1cm]
d(P,\pi_1)=d(P,\pi_2)\\
\left| \frac{2x_0+3y_0-4z_0-6}{\sqrt{2²+3²+(-4)²}} \right|=\pm \frac{-3x_0+4y_0-2z_0-0}{\sqrt{(-3)²+4²+(-2)²}}\\
\sqrt{29} \cdot (2x_0+3y_0-4z_0-6)=\pm \sqrt{29} \cdot (-3x_0+4y_0-2z_0-0)\\
(2x_0+3y_0-4z_0-6)=+(-3x_0+4y_0-2z_0-0)\\
\sigma_1: 5x-y-2z-6=0\\
(2x_0+3y_0-4z_0-6)=-(-3x_0+4y_0-2z_0-0)\\
\sigma_2: -x+7y-6z-6=0
\]

La distància \[d\] mínima o perpendicular d’un punt \[P\] a un pla (o a una recta) és el mòdul del vector projecció entre un punt del pla (origen) i el punt P (extrem).

El signe del vector distància és positiu si el sentit d’aquest vector és el mateix que el del vector normal del pla, i és negatiu si els sentits d’ambdós vectors són contraris.

5.5 Tres plans

Per a determinar la posició relativa de tres plans hem d’usar les equacions generals dels plans i calcular el rang de la matriu de coeficients i de l’ampliada. En alguns casos, també hem de tenir en compte els vectors directors dels plans per tal de no confondre dues posicions relatives amb el mateix resultat quan comparem els rangs:

\[
\pi_1: A{_1} x+B{_1} y+C{_1} z+D{_1}=0\\
\pi_2: A{_2} x+B{_2} y+C{_2} z+D{_2}_=0\\
\pi_3: A{_3} x+B{_3} y+C{_3} z+D{_3}=0
\]
Posició relativaComparació vectors directoresRang matriu coeficients(*)Rang matriu ampliada(*)
Coincidents11
Paral·lels dos a dos12
Paral·lels i dos de coincidents\[\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}\]12
Secants i diferents22
Dos de coincidents i un de secant\[\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}\]22
Secants dos a dos23
Dos de paral·lels i un de secant\[\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} \neq \frac{D_1}{D_2}\]23
Secants en un punt33
Tres plan coincidents
Paral·lels dos a dos
Secants i diferents
Dos de coincidents i un de secant
Paral·lels i dos de coincidents
Secants dos a dos
Dos de paral·lels i un de secant
Secants en un punt

6. Distàncies i angles

6.1 Distàncies

6.1.1 Punt-recta

La distància mínima és la distància perpendicular entre el punt i la recta.

El procediment que usarem és el següent:

\[
\left| \vec v_r \right| \cdot d=\left| \vec v \times \vec v_r \right|\\
d=\frac{\left| \vec v \times \vec v_r \right|}{\left| \vec v_r \right|}\\[1cm]
\]

Exemple:

\[
P(1,2,3)\\
r:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-5}{1}\\
\vec v_r=(2,3,1), \; P_r=(1,2,5)\\[1cm]
\vec v=P-P_r=(1,2,3)-(1,2,5)=(0,0,-2)\\
d=\frac{\left| (0,0,-2) \times (2,3,1) \right|}{\left| (2,3,1) \right|}=
\sqrt{\frac{26}{7}} \; u.
\]

També podem calcular la distància de la següent manera (més complicada):

El vector normal \[\vec n\] del pla perpendicular a la recta és el vector de la recta \[\vec v_r\].

  1. l’equació del pla de vector normal \[\vec n\] que conté el punt \[P\].
  2. Trobem el punt d’intersecció de la recta \[Q\] i el pla resolent el sistema d’equacions formats per les equacions generals.
  3. Calculem el mòdul del vector \[\vec {PQ}\].
\[
P_0(1,2,3)\\
r:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-5}{1}\\[1cm]
1.\\
\vec v_r=\vec n=(2,3,1)\\
\pi:2x+3y+z+D=0 \\[1cm]
2.\\
2 \cdot 1+3 \cdot 2 +1 \cdot 3+D=0, \; D=-11\\
\pi: 2x+3y+z-11=0\\[1cm]
3.\\
\begin{cases}
2x+3y+z=11\\
3x-2y=-1\\
1x-2z=-9
\end{cases}\\
x=\frac{5}{7}, \, y=\frac{11}{7}, \; z=\frac{34}{7}\\[1cm]
4.\\
\vec {PQ}=P-Q=(\frac{5}{7},\frac{11}{7},\frac{34}{7})-(1,2,3)=(-\frac{2}{7},-\frac{3}{7},\frac{13}{7})\\
d=\sqrt{(-\frac{2}{7})²+(-\frac{3}{7})²+(\frac{13}{7})²}=\sqrt{\frac{26}{7}} \; u.
\]

6.1.2 Punt-pla

La distància d’un punt a un pla es calcula fent \[d(P,\pi)=\frac{Ax_0+By_0+Cz_0+D}{\sqrt{A²+B²+C²}}\]. L’equació del pla ha d’estar en forma general.

Exemple:

\[
P_o(3,2,1)\\
\pi:-5x+6y-4z+10=0\\
\\[0.5cm]
d(P_o,\pi)=\left|\frac{-5 \cdot 3+6 \cdot 2-4 \cdot 1+10}{\sqrt{(-5)²+(6)²+(-4)²}}\right|\approx 3.76
\]

6.1.3 Punt-punt

Per a calcular la distància entre dos punts hem de calcular el mòdul del vector entre els dos punts.

Exemple:

\[
P(3,2,1), \; Q(-4,2,2)\\
d(P,Q)=\left|\vec {PQ}\right|=\left|Q-P\right|\\
\left|(-4,2,2)-(3,2,1)\right|=\sqrt{(-7)²+(0)²+(1)²}=\sqrt {50} \; u.
\\[0.5cm]
M=\frac{P+Q}{2}=\frac{(3,2,1)+(-4,2,2)}{2}=(\frac{-1}{2},2,\frac{3}{2})
\]

6.1.4 Recta-recta

Es determina calculant la distància d’un punt d’una recta a l’altra recta.

6.1.5 Recta-pla

Es determina calculant la distància d’un punt de la recta al pla.

6.1.6 Pla-pla

Es determina calculant la distància d’un punt d’un pla a l’altre pla.

6.2 Angles

Per a calcular l’angle entre dos vectors fem:

\[\cos \theta=\frac{\vec u \cdot \vec v}{\left| u \right| \cdot \left| v \right|}\]

Exemple:

\[
\vec v_1(3,2,1), \; \vec v_2(-4,2,2)\\
\cos \theta=\frac{(3,2,1) \cdot (-4,2,2)}{\left|(3,2,1)\right| \cdot \left|(-4,2,2)\right|}\\
\cos \theta=\frac{-6}{\sqrt{14} \cdot \sqrt{24}}=-\frac{\sqrt{21}}{14}\\
\theta=\arccos {(-\frac{\sqrt{21}}{14})}=109.11^{\circ}
\]

6.2.1 Recta-recta

6.2.2 Recta-pla

L’angle entre la recta i el pla és \[90-\theta\]. Aquest angle també es pot calcular directament fent \[\sin \theta=\frac {\vec u \cdot \vec v}{|\vec u| \cdot |\vec v|}\].

6.2.3 Pla-pla

Es calcula de la mateixa manera que l’angle entre dues rectes l’angle_entre dues rectes fent servir els vectors normals dels plans.


  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Geometria en el pla

1. Equacions de la recta

(Vegeu Vectors en el pla per a saber-ne més.)

1.1 Definició

Una recta és un conjunt de punt infinits en línia. Podem definir una recta amb dos punts o amb un punt i un pendent.

punt-punt
punt -pendent

1.2 Equacions de la recta

L’equació d’una recta es pot expressar de diferents maneres. Farem sevir l’equació que més ens convingui per tal de fer els càlculs més fàcilment o segons les dades disponibles.

1.3 Equació vectorial

L’equació vectorial de la recta es dedueix de la definició d’una recta amb dos punts: si a un punt d’origen de la recta que volem definir li sumem un nombre determinat de vegades (\[t\]) un dels vectors directors de la recta podem trobar-ne qualsevol altre punt.

\[(x,y)=(x_0,y_0) + t \cdot (u,v)\]

1.4 Equació paramètrica

Igualant els components \[x\] i \[y\] de l’equació vectorial:

\[
x=x_0+t \cdot u\\
y=y_0+ t \cdot v
\]

1.5 Equació contínua

Aïllant el paràmetre \[t\] de cadascuna de les equacions paramètriques anteriors:

\[
t=\frac{x-x_0}{u}=\frac{y-y_0}{v}
\]

1.6 Equació general o implícita

Surt de fer el producte d’extrems i de mitjos de l’equació contínua:

\[
v \cdot (x-x_0)=u \cdot (y-y_0)\\
v \cdot x-v \cdot x_0=u \cdot y-u \cdot y_0\\
v \cdot x-u \cdot y-v \cdot x_0+u \cdot y_0=0\\
A=v, \, B=-u, \, C=-v \cdot x_0+u \cdot y_0\\
Ax+By+C=0
\]

El vector \[\vec{n}=(A,B)\] és un dels dos vectors perpendiculars de la recta. Per a calcular el vector perpendicular d’una recta tan sols hem de permutar els components del vector i canviar-ne un de signe.

Els vectors perpendiculars de dues rectes formen el mateix angle que els vectors directors.

Exemple:

\[\vec{v}=(9,-6) \rightarrow \vec{n_1}=(6,9), \enspace \vec{n_2}=(-6,-9)\].

1.7 Equació explícita

Aïllant la \[y\] de l’equació general:

\[
y=-\frac{A}{B} \cdot x-\frac{C}{B}\\
m=-\frac{A}{B}, \, n=-\frac{C}{B}\\
y=m \cdot x+n
\]

1.8 Equació punt-pendent

Es dedueix de la definició de la recta amb un punt i un pendent:

\[
(y-y_0)=m \cdot (x-x_0)
\]

1.9 Equació canònica

Els denominadores de l’equació canònica són les coordenades \[x\] i \[y\] del punts de tall amb els eixos de coordenades \[(a,0)\] i \[(0,b)\]:

\[
Ax+By+C=0\\
\frac{A}{-C}x+\frac{B}{-C}y+\frac{C}{-C}=0\\
\frac{x}{\frac{-C}{A}}+\frac{y}{\frac{-C}{B}}=1\\
a=\frac{-C}{A|}, \, b=\frac{-C}{B}\\
\frac{x}{a}+\frac{y}{b}=1
\]

Exemple:

\[
P (2,3), \, Q=(-4,6)\\[0.5cm]
Calculem \enspace el \enspace vector \enspace director\\
\vec{PQ}=(-4,6)-(2,3)=(-6,3) \enspace \\[0.5cm]
Equació \enspace vectorial)\\
(x,y)=(2,3)+t\cdot (-6,3) \\[0.5cm]
Equació \enspace paramètrica\\
x=2-6t\\
y=3+3t \\[0.5cm]
Equació \enspace contínua\\
t=\frac{x-2}{-6}=\frac{y-3}{3} \\[0.5cm]
Equació \enspace implícita \enspace o \enspace general\\
3(x-2)=-6(y-3)\\
3x-6+6y-18=0\\
3x+6y-24=0 \\[0.5cm]
Equació \enspace explícita\\
y=-\frac{3}{6}x+\frac{24}{6}\\
y=-\frac{1}{2}x+6 \\[0.5cm]
Equació \enspace canònica\\
\frac{x}{\frac{24}{3}}+\frac{y}{\frac{24}{6}}=1\\
\frac{x}{8}+\frac{y}{4}=1\\[0.5cm]
Equació \enspace punt-pendent\\
(y-2)=-\frac{1}{2}(x-3)
\]

2. Posició relativa de dues rectes

O bé dues rectes són paral·leles, o bé són secants. Per a determinar si dues rectes son paral·leles o coincidents (paral·lelisme) o secants (amb un angle qualsevol o perpendiculars) resoldrem el sistema d’equacions lineals.

rectes perpendiculars (t:, s:) o secants amb un angle diferent de 90º (r:,s:).
Rectes parale·les (r:, s:) o coincidents (r:, t:)

(Vegeu Classificació dels sistemes d’equacions per a saber-ne més.)

3. Distàncies i angles

Calcularem la distància mínima o perpendicular entre un punt i una recta usant la fórmula següent:

\[
d(P,r)=\frac{Ax_0+By_0+C}{\sqrt{A²+B²}}\\
\]

Exemple:

\[
P(-5,7), \enspace r:3x+6y-24=0\\
d(P,r)=\frac{3 \cdot -5+6 \cdot 7-24}{\sqrt{3²+6²}}=\frac{3}{\sqrt{45}}=\frac{1}{\sqrt{5}}u.
\]

Calcularem l’angle entre dues rectes secants amb la fórmula següent:

\[
\cos \theta=\frac{\vec u \cdot \vec v}{|u| \cdot |v|}\\
\theta=\arccos {\frac{\vec{u} \cdot \vec{v}}{|u| \cdot |v|}}
\]

Exemple:

\[
r:3x+6y-24=0, \enspace s:-5x+4y+9=0\\
\vec{n_r}=(3,6), \enspace \vec{n_s}=(-5,4)\\
\theta=\arccos \frac{(3,6) \cdot (-5,4)}{\sqrt{3²+6²} \cdot \sqrt{(-5)²+4²}}\\
\theta=\frac{-15+24}{\sqrt{45*41}}=\frac{9}{\sqrt{1845}}=\frac{9}{3\sqrt{205}}=\frac{3}{\sqrt{205}}॰
\]

  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Integració

1. Definició

La integració (antiderivada) és el càlcul de la funció primitiva \[F(x)\] d’una funció \[f(x)\] . Si \[f(x)=F'(x) \Rightarrow \int f(x) \; dx=F(x)\].

La integració i la derivació són funcions inverses.

1.1 Propietats de les integrals

Si \[ f(x)\] és la funció derivada d’una funció primitiva \[ F(x)\]:

1.1.1 \[\int {k \cdot f(x) \;dx}= k \cdot \int{f(x) \;dx}\]

1.1.2 \[\int {f(x)+g(x)\;dx}= \int{f(x) \;dx+\int{g(x) \;dx}}\]

1.1.3 \[\int {d[f(x)]}= f(x)\]

2. Integrals indefinides

Una integral indefinida són totes les funcions primitives \[F(x)\] d’una funció \[f(x):\] \[\int f(x) \enspace dx=F(x)+C\]. Les diferents funcions es diferencien una de l ‘altra tan sols per un paràmetre \[C\].

Exemple:

\[
F(x)=6x³-2x²+7x+8\\
f(x)=18x²-4x+7\\
F(x)=\int f(x) \; dx=\int (18x²-4x+7) \enspace dx=6x³-2x²+7x+C
\]

A la integral d’una funció derivada (primitiva) li hem d’afegir una constant \[C\] perquè la derivada d’una constant és zero, i quan derivem la primitiva aquesta constant es perd. Aquest paràmetre és el deplaçament vertical de la funció.

3. Integrals immediates

Són les integrals que s’obtenen de les regles de derivació invertides:

Exemple:

\[
F(x)=x^n\\
f(x)=\frac{d[F(x)]}{dx}=\frac{d}{dx}x^n=n \cdot x^{n-1}\\
d[F(x)]=f(x) \; dx=n \cdot x^{n-1} \; dx\\[0.5cm]
\text{Per tant}:\\[0.5cm]
F(x)=\int {f(x) \; dx}=n \, \int {x^{n-1}} \enspace dx=x^n+C
\]

Les integrals obtingudes d’aquesta manera formen la taula d’integrals.

3.1 Taula d’integrals immediates

f (x)f(u)F(x)F(u)
\[\int dx\enspace\]\[\int du\]\[x+C\]\[u+C\]
\[\int k \enspace dx\]\[\int k \enspace du\]\[kx+C\]\[ku+C\]
\[\int {\frac{dx}{x}} \enspace dx\]\[\int {\frac{du}{u}} \enspace dx\]\[\ln x+C\]\[\ln u+C\]
\[\int e^x \enspace dx\]\[\int e^u \enspace du\]\[e^x+C\]\[e^u+C\]
\[\int a^x \enspace dx\]\[\int a^u \enspace du\]\[\frac{a^x}{\ln a}+C\]\[\frac{a^u}{\ln a}+C\]
\[\int \sin x \enspace dx\]\[\int \sin u \enspace du\]\[-\cos x+C\]\[-\cos u+C\]
\[\int \cos x \enspace dx\]\[\int \cos u \enspace du\]\[\sin x+C\]\[\sin u+C\]
\[\int \tan x \enspace dx\]\[\int \tan u \enspace du\]\[-\ln |\cos x |+C\]\[-\ln |\cos u |+C\]
\[\int \frac{1}{\sqrt{1-x²}} \enspace dx\]\[\int \frac{1}{\sqrt{1-u²}} \enspace du\]\[\arcsin x+C\]\[\arcsin u+C\]
\[\int \frac{-1}{\sqrt{1-x²}} \enspace dx\]\[\int \frac{-1}{\sqrt{1-u²}} \enspace du\]\[\arccos x+C\]\[\arccos u+C\]
\[\int \frac{1}{1+x²} \enspace dx\]\[\int \frac{1}{1+u²} \enspace du\]\[\arctan x+C\]\[\arctan u+C\]

La resolució és immediata, la integral d’una de les funcions derivades de la columna esquerra és la funció primitiva que li correspon de la columna de la dreta.

Per la regla de la cadena de derivació de funcions compostes, la integral ha d’encloure \[du\] la derivada d’ \[u\]:

\[
F(x)=e^{2x²+3x} \rightarrow F'(x)=f(x) \; dx=e^{2x²+3x} \cdot (4x+3) \; dx\\
\int {f(x) \; dx}=\int {e^{2x²+3x} \; (4x+3) \; dx}\\
[u=2x²+3x, \; du=(4x+3) \; dx]\\
\int {e^{2x²+3x} \; (4x+3) \; dx}= \int e^u \; du
\]

4. Mètodes d’integració

Si hem de resoldre una integral que no és immediata, haurem de descompondre-la en una o més integrals que sí són immediates i després resoldre cadascuna d’aquestes intergrals.

Els procediments de descompondre la integral original en integrals de la taula d’integrals immediates són els mètodes d’integració.

La tria del mètode d’integració dependrà de la funció que volem integrar. L’ordre de verificació del mètode d’integració més adient, és:

  1. Integral immediata (vist en l’apartat anterior)
  2. Integral quasi immediata
  3. Integral per parts
  4. Descomposició en fraccions simples
  5. Trigonomètrica
  6. De substitució

En aquesta entrada veurem com es fan sobretot els mètodes \[1,2,3,4\].

4.1 Integrals quasi immediates

Són integrals que no són immediates però que es poden transformar fàcilment en immediates fent algunes transformacions simples. Es resolen usant la taula d’integrals i les propietats de les integrals. De fet, es resolen per mètodes de susbstitució molt senzills.

Exemple:

\[
\int \frac{x}{x²+6} \enspace dx \\
[u=x²+6, \, du=2x \; dx]\\
\frac{1}{2}\int \frac{2x}{x²+6} \enspace dx\\
\frac{1}{2}\int \frac{du}{u}\\
\frac{1}{2}\ln u+C\\
\frac{1}{2}\ln (x²+6)+C\\
\]

En aquest exemple, hem usat la tercera integral immediata de la taula d’integrals i la primera propietat de les integrals per a resoldre la integral de l’exemple.

4.3 Integrals per parts

Quan la funció que volem integrar és el producte de dues funcions i no es una integral immediata o quasi immediata, intentarem resoldre-la per parts.

La fórmula que usarem per a aplicar aquest mètode és \[\int {u \; dv}=u \cdot v – \int {v \; du}\]. El perquè d’aquesta fórmula és:

\[
d(u \cdot v)=v \cdot du + u \cdot dv\\
\int {d(u \cdot v)}=\int {v \cdot du} + \int{u \cdot dv}\\
\int {u \cdot dv}=u \cdot v-\int v \cdot du+C
\]

La integral \[\int v \; du\] ha de ser més fàcil de resoldre que la integral original \[\int u \; dv\] i el terme de susbstitució \[dv\] ha d’incloure sempre el terme \[dx\] de la integral original.

Exemple:

\[
I=\int \ln x \; dx\\
u=\ln x \rightarrow du=\frac{dx}{x}\\
dv=dx \rightarrow v=\int {dx}=x\\[1cm]
I=\ln x \cdot x-\int{x \frac{dx}{x}}\\
I=\ln x \cdot x-\int{dx}\\
I=\ln x \cdot x-x\\
I=x(\ln x -1)+C\\
\]

De vegades, quan la integral està formada per les funcions \[e^u, \; \sin x/ \cos x\], haurem d’integrar per parts dues o més vegades:

\[
I=\int {e^{x} \, \sin x \; dx} \\
u=\sin x \rightarrow du= \cos x \; dx\\
dv=e^x \; dx \rightarrow v=\int {e^x \; dx}=e^x\\[1cm]
\int {u \; dv}=\int { e^x \; \sin x \; dx}\\
u \cdot v= \sin x \cdot e^x\\
\int {v \; du}=\int e^x \; \cos x \; dx\\[1cm]
I=\sin x \; e^x-\int e^x \; \cos x \; dx\\
I=\sin x \; e^x- \; I_1\\[1cm]
I_1=\int e^x \; \cos x \; dx\\
u=\cos x \rightarrow du= -\sin x \; dx\\
dv=e^x \; dx \rightarrow v=\int {e^x \; dx}=e^x\\[1cm]
I_1= \cos x \; e^x+\int{\sin x \; e^x \; dx}\\
I_1=\cos x \; e^x+I\\
I=\sin x \; e^x-(\cos x \; e^x+I)\\
2I=\sin x \; e^x-\cos x \; e^x\\
I=\frac{e^x(\sin x-\cos x)}{2}
\]

2.4 Per descomposició en fraccions simples

La descomposició en fraccions simples és el procediment invers de l’operació de suma de fraccions algebraiques.

2.4.1 Si N(x) ≥ D(x):

Quan la funció que volem integrar és una funció racional \[f(x)=\frac{N(x)}{D(x)}\] i la integral no es pot resoldre més fàcilment per cap dels mètode anteriors, farem servir aquest mètode, tenint em compte que:

\[
N(x)=q(x) \cdot D(x)+r(x)\\
\frac{N(x)}{D(x)}=q(x)+\frac{r(x)}{D(x)}\\
\]

\[N(x)\] és el polinomi del numerador, \[D(x)\] és el polinomi del denominador, \[q(x)\] és el polinomi del quocient i \[r(x)\] és el polinomi residu de la divisió polinòmica.

Per a resoldre la integral, farem el següents passos:

  1. Farem la divisió polinòmica \[\frac{N(x)}{D(x)}\].
  2. Descompondrem la funció f(x) en dues o més integrals: \[q(x)+\frac{r(x)}{D(x)}\].
  3. Resoldrem cada integral amb el mètode més adient.

Exemple:

\[
\int {\frac{x³+2x²-5x+1}{x²+1}}\\[1cm]
1. \; \frac{x³+2x²-5x+1}{x²+1}=(x+2)-\frac{6x+1}{x²+1}\\
2. \; \int {x \; dx}+2 \int {dx}-6 \int{\frac{x}{x²+1} \; dx}-1 \int {\frac{dx}{x²+1}}\\
3. \; \int {x \; dx}+2 \int {dx}-\frac{6}{2} \int{\frac{2x}{x²+1} \; dx}-1 \int {\frac{dx}{x²+1}}\\
\frac{x²}{2}+2x-3 \ln {(x²+1)}-1 \arctan {(x²+1)}+C
\]

2.4.2 Si N(x) < D(x):

Com que no és possible fer la divisió polinòmica, farem la descomposició en fraccions parcials. Recordeu que la descomposició en fraccions parcials és el procediment invers de l’addició de fraccions.

La seqüència del procediment és la següent:

Exemple:

1.Factoritzarem el denominador de la funció racional fins a obtenir-ne polinomis irreductibles. Els factors seran, o bé binomis lineals (x+a), o bé polinomis quadràtics irreductibles (ax²+bx+c).

2.Transformarem la funció racional en diferents fraccions de la següent manera: la fracció que correspon a cada factor lineal (x+a) és \[\ \frac{A}{(x+a)}\] (A és un valor constant).
La fracció que correspon a cada factor quadràtic (ax²+bx+c) és \[\frac{Ax+B}{(ax²+bx+c)}\]. En ambdós casos, a cada factor li corresponen tantes fraccions com multiplicitat o nombre de solucions múltiples tingui el factor.

Exemple:

\[
1.\frac{2x²+5}{x⁷+6x⁶+14x⁵+20x⁴+25x³+22x²+12x+8}\\
\frac{2x²+5}{(x+2)³ (x²+1)²}\\[0.5cm]
\text{Factor lineal: (x+2), multiplicitat 3}\\
\text{Factor quadràtic: (x²+1), multiplicitat 2}\\[0.5cm]
2.\frac{2x²+5}{(x+2)³ (x²+1)²}=\frac{A}{(x+2)³}+\frac{B}{(x+2)² }+\frac{C}{(x+2)¹}+\frac{Dx+E}{(x²+1)²}+\frac{Fx+G}{(x²+1)¹}
\]]

3.Farem l’addició de fraccions i eliminarem els denominadors.

4.Igualarem els coeficients de cada monomi del numerador amb els coeficients dels monomis semblants del denominador.

5.Resoldrem el sistema d’equacions obtingut.

6.Un cop feta la descomposició de la funció racional en fraccions més simples, farem les integrals de cada fracció.

Exemple:

\[
\int {\frac{4x²-2x}{x⁴ +4x³+5x²+4x+4} \; dx}\\[1cm]
1.\\
\frac{4x²-2x}{x⁴ +4x³+5x²+4x+
4}=\frac{4x²-2x}{(x+2)² \cdot (x²+1)}\\[0.5cm]
2. \\
\frac{4x²-2x}{x⁴+4x³+5x²+4x+4}=\frac{A}{(x+2)²}+\frac{B}{(x+2)}+\frac{Cx+D}{(x²+1)}\\[0.5cm]
3.\\
4x²-2x=A(x²+1)+B(x+2)(x²+1)+(Cx+D)(x+2)²\\
A(x²+1)+B(x³+2x²+x+2)+(Cx+D)(x²+4x+4)\\
Ax²+A+Bx³+2Bx²+Bx+2B+Cx³+4Cx²+4Cx+Dx²+4Dx+4D\\[0.5cm]
4.\\
0x³=(B+C)x³\\
4x²=(A+2B+4C+D)x²\\
-2x=(B+4C+4D)x\\
0=A+2B+4D\\[0.5cm]
5.\\
0=B+C\\
4=(A+2B+4C+D)\\
-2=(B+4C+4D)\\
0=A+2B+4D\\
A=4,B=-\frac{4}{10},C=\frac{4}{10}, \, D=-\frac{8}{10}\\[0.5cm]
6.\\
\int {\frac{4x²-2x}{x⁴ +4x³+5x²+4x+
4}}= 4\int{\frac{dx}
{(x+2)²}}-\frac{4}{10}\int{\frac{dx}{(x+2)}}+\int { \frac{\frac{4x}{10}-\frac{8}{10}}{(x^2+1)} }\\
-\frac{4}{x+2}-\frac{4}{10}\ln(x+2)+\frac{1}{10}[ \int{ \frac{4x}{x²+1} \; dx-8\int{\frac{dx}{x²+1}} } \; dx ]\\
-\frac{4}{x+2}-\frac{4}{10}\ln(x+2)+\frac{1}{10}[2 \; \ln {(x²+1)}-8 \arctan{(x²+1)} ]+C
\]

2.5 Per substitució o canvi de variable

En aquest mètode es modifica la funció \[f(x)\] substituint-ne una part per una expressió algebraica perquè la funció resultant sigui més fàcil d’integrar. Aquests expressió es funció d’una nova variable independent \[g(t)\].

El mètode de substitució o de canvi de variable per a calcular primitives té el seu origen en la regla de la cadena per a derivades.

El procediment per a aquest mètode és:

1.Trobar el canvi de variable adient que transformi la funció \[f(x)\] en una altra de més senzilla.
2.Calculem la funció \[g(t)\] que resulta de fer el canvi de variable i substituim \[f(x)\] per aquesta funció.
3.Fent servir el canvi de variable, calculem i substituim \[dx\].
4.Resolem la integral \[\int {g(t) \; dt}\].
5.Desfem el canvi.

Exemple:

\[
\int {\frac{x²}{\sqrt{1+x³}}dx}\\[1cm]
1.\\
1+x³=t²\\[0.5cm]
2.\\
x² \hspace{1.3cm}: \; x=\sqrt[3]{t²-1} \Rightarrow x²=\sqrt[3]{(t²-1)²}\\[0.5cm]
\sqrt{1+x³}: \;\sqrt{1+x³}=t²\\[0.5cm]
3.\\d(1+x³)=d(t²), \; 3x²dx=2tdt\\[0.5cm]
4.\\
\frac{1}{3}\int {\frac{2t}{t}dt}\\
\frac{2}{3}t+C\\
5.\\
\frac{2}{3}\sqrt{1+x³}+C
\]

2.5.1 Canvis de variable més habituals

\[ \int f(ax+b) \ dx = \frac {1}{a} \int f(u) \ du\]\[u=ax+b\]
\[ \int f(\sqrt{ax+b} \ dx = \frac{2}{a} \int u\cdot f(u) \ du\] \[u=\sqrt{=ax+b}\]
\[ \int f(\sqrt[n]{ax+b}) \ dx= \frac{n}{a} \int u^{n-1} f(u) \ du\] \[u=\sqrt[n]{ax+b}\]
\[ \int f(\sqrt{a^2+b^2}) \ dx= a \int f(a\cdot \cos u ) \ du\]\[u=a\cdot\sin u\]
\[ \int f(e^{ax}) \ dx = \frac{1}{a} \int \frac{f(u)}{u} \ du\]\[u=e^{ax}\]
\[ \int f(\ln x) \ dx=\int f(u) e^u du\]\[u=\ln x\]

3. Integrals definides

Una integral definida és la integració d’una funció \[f(x)\] en un interval del seu domini: \[A=\int_{a}^{b}{f(x)\; dx}\].

\[a,b\] són els límits inferior i superior de l’interval.

El valor \[A\] de la integral representa l’àrea tancada per la funció entre els límits \[a,b\] i l’eix \[OX\].

Si calculem l’àrea que hi ha dessota de la funció (línia carabassa) aproximant-la a la del rectangle verd, podríem fer un error important. Però si dividim l’àrea en rectangles petits, calculem l’àrea de cadascun, i en fem la suma, el resultat serà més aproximat i l’error més petit. El cálcul serà més precís com més estrets siguin els rectangles. Si l’amplada dels rectangles és infinitesimal (infinitament petita), el resultat serà pràcticament exacte ( \[dx=\Delta x \rightarrow 0\]).

3.1 Regla de Barrow

Per fer el cálcul d’una intergral definida usem la regla de Barrow (el segon teorema fonamental del càlcul:

\[A=\int_{a}^{b}{f(x) \; dx}=F(b)-F(a)\]

Exemple:

\[
\int_{2}^{4}{x^2-3x+6} \; dx\\
{\frac{x³}{3}-3\frac{x²}{2}+6x}\; |^{4}_{2}\\
\frac{1}{3}(4³-2³)-\frac{3}{2}(4²-2²)+6(4-2)\\
\frac{1}{3}(64-8)-\frac{3}{2}(16-4)+6(4-2)\\
\frac{56}{3}-\frac{3}{2}(12)+6(2)\\
\frac{56}{3}-\frac{36}{2}+12=\frac{38}{3}u^2
\]

El procediment per a calcular l’àrea tancada per dues o meś funcions entre els límits \[a, b\] i l’eix \[OX\], és el següent:

  1. Calculem els límits inferior i superior resolent el sistema d’equacions format per les equacions de les funcions.
  2. Calculem l’àrea tancada per les funcions entre límits i l’eix OX: \[A=|\int_{a}^{b}{(y_1-y_2)}|\]

El càlcul de la integral es fa amb valor absolut per evitar que l’àrea sigui negativa.

Exemple:

\[
y_1=x²-5x+7\\
y_2=-x+7\\[1cm]
1.\\
y_1=y_2\\
x²-5x+7=-x+7\\
x²-4x=0\\
x=0,+4\\[1cm]
2.\\
A=|\int_{0}^{+4}{(x²-4x) \; dx}\; |\\
|{\frac{x³}{3}–4\frac{x²}{2}|}^{+4}_{0}|\\
|\frac{1}{3}[{4³}-(0)³]–2[(4²-(0)²]|\\
|\frac{64}{3}-32|=\frac{32}{3}u²
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Programació lineal

1. Definició

La programació lineal és la part de les matemàtiques que determina el valor de les variables restringides \[x, y\] d’una funció \[f(x,y)\] que es vol maximitzar o minimitzar. La funció i les restriccions són funcions lineals.

A batxillerat, també s’estudia com fer l’optimització de funcions no lineals de dues variables.

(Vegeu també l’entrada Inequacions per a saber-ne més)

2. Resolució

Els passos per a resoldre els exercicis de programació lineal són:

  1. Es llegeix atentament l’exercici per tal de plantejar l’equació de la funció i el sistema d’inequacions de les restriccions.
  2. S’escriu l’equació de la funció que es vol optimitzar i les inequacions de les restriccions: la pregunta de l’exercici ens indica quines són les variables que hem de calcular. Per tant,  assignarem les incògnites \[x,y\] a aquestes variables per a construir la taula de restriccions.
  3. Dibuixem la regió factible delimitada pel sistema d’inequacions.
  4. Calculem els vèrtexs de la regió factible.
  5. Introduïm el valor de cada vèrtex a la funció i en calculem el valor.
  6. Determinem el valor de la funció més gran (màxim) o més petit (mínim).

Exemple (PAU juny 2001):



  1. En un taller de confecció es disposa de 80 metres quadrats de tela de cotó i de 120 metres quadrats de tela de llana. Es fan dos tipus de vestits, A i B. Per fer un vestit del tipus A es necessita 1 metre quadrat de cotó i 3 metres quadrats de llana; en canvi, per un vestit del tipus B calen 2 metres quadrats de cada tipus de tela.

    a) Quants vestits de cada tipus s’han de fer per obtenir un benefici total màxim si per cada vestit (sigui del tipus que sigui) es guanyen 30 euros?

    b) Quina seria la conclusió a la pregunta anterior si per cada vestit del tipus A es guanyen 30 euros i, en canvi, per cada un del tipus B només es guanyen 20 euros.

2.

Nombre de vestits A: \[x\]
Nombre vestits B: \[y\]

Funció objectiu: \[f(x,y)=30x+30y\]

Taula de restriccions:

AB
Llana\[3x\]\[2y\]\[\leq 120\]
Cotó\[1x\]\[2y\]\[\leq 80\]

3.

Per a delimitar la regió factible, dibuixarem la funció lineal de cada inequació.

Cada funció divideix el pla en dos semiplans. Per a determinar quin és el semiplà solució, substituirem un punt qualsevol del pla en la inequació. El punt que triem no ha de ser un punt de les rectes de les inequacions. Normalment agafem el (0,0) per comoditat de càlcul.

Si es compleix la inequació, el semiplà solució és el pla al qual pertany el punt anterior, sinó és l’altre.

Farem el mateix procediment per a cada inequació. La regió comuna als semiplans és la regió factible.

Exemple:

\[
x+2y \leq 80\\
0+2 \cdot 0=0\\
0 \leq 80\\[1cm]
3x+2y \leq 120\\
3 \cdot 0+2 \cdot 0=0\\
0 \leq 120\\
\]

4.

Per a calcular el vèrtex de color blau, fem el sistema d’equacions:

\[
y=\frac{80-x}{2}=\frac{120-3x}{2}\\
2(80-x)=2(120-3x)\\
80-120=-3x+x\\
2x=40\\
x=20\\[1cm]
y=\frac{80-x}{2}\\
y=30
\]

5.

\[
f(40,0)=30.40+30.0=1 200\\
f(0,40)=30.0+30.40=1 200\\
f(20,30)=30.20+30.30=\textbf {1 500}
\]

6. El punt que maximitza la funció és el \[\textbf {(20,30).}\]

La solució de l’apartat b) és:

\[
f(x,y)=30x+20y\\[0.5cm]
f(40,0)=30.40+20.0=1 200\\
f(0,40)=30.0+20.40=800\\
f(20,30)=30.20+20.30=\textbf {1 200}
\]

6. El punt que maximitza la funció és també el \[\textbf {(20,30).}\]

  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Clases particulares a domicilio o academias de refuerzo?

Qué diferencia las clases de refuerzo de CEEdukat de las clases particulares a domicilio?

CLASSES DE REPÀS I TÈCNIQUES D'ESTUDI

A pesar que las clases particulars a domicilio son populares, ir a una academia para hacer clases de refuerzo tiene algunas ventajas que las clases particulares a domicilio no pueden ofrecer.

Por esta razón, queremos exponer las principales características de las clases de refuerzo de CEEdukat:

  • En CEEdukat hace once años que ayudamos con clases de refuerzo a los estudiantes de primaria, ESO y bachillerato y a gente adulta a comprender y superar los retos de estudio de la enseñanza actual.

    Somos especialistas en refuerzo escolar!
  • Ambiente de estudio sin distracciones para el estudiante. La experiencia nos ha demostrado que en las clases particulars a domicilio el estudiante tiene muchas distracciones y no se concentra en el estudio. El aula de CEEdukat, sin embargo, es un ambiente de estudio que permite la concentración de los estudiantes sin distracciones.

    Las clases de refuerzo de CEEdukat son en grupos reducidos y se atiende a cada estudiante de forma indivudial y personalizada.

    Además, respetamos las disposiciones legales y medidas de seguridad vigentes.
  • Horarios amplios y flexibles:

    Abrimos por las mañana, por la tarde y los sábados por la mañana para que se pueda escoger el horario más adecuado. También abrimos en Navidad y Semana Santa.
  • Recuperación de clases:

    Si no se puede asistir a clase algún día, se puede recuperar el día del mes que más convenga y así nunca se perderán horas de refuerzo.
  • Precios ajustados:

    Tenemos paquetes mensuales de horas de refuerzo con tarifas ajustadas y variables para podáis estudiar y planificar el tiempo de estudio a vuestro ritmo.

    Los precios de CEEdukat suelen ser más económicos que los de las clases particulares a domicilio porque no cobramos el desplazamiento y podemos atender más estudiantes cada hora.
  • Clases presenciales y virtuales:

    Las restricciones impuestas a las academias a causa de la pandemia COVID-19 nos han forzado a desarrollar métodos de enseñanza virtuales de la misma calidad y eficiencia que las presenciales. No notaríais la diferencia entre uno y otro método.

En CEEdukat sentimos pasión por la enseñanza!

Soliciten más información enviando este formulario:

Formulario de contacto
Servicios *
INFORMACIÓN PROTECCIÓN DE DATOS DE XAVIER MAS i RAMóN (CENTRE D'ESTUDIS EDUKAT)

Finalidades: Responder a sus solicitudes y remitirle información comercial de nuestros productos y servicios, incluso por correo electrónico. Legitimación: Consentimiento del interesado. Destinatarios: No están previstas cesiones de datos. Derechos: Puede retirar su consentimiento en cualquier momento, así como acceder, rectificar, suprimir sus datos y otros derechos a centre.estudis.edukat@ceedukat.es. Información Adicional: Puede ampliar la información en el enlace de Avisos Legales.

Obligatorio
Obligatorio

Classes particulars a domicili o acadèmies de reforç?

Què diferencia les classes de reforç de CEEdukat de les classes particulars a domicili?

formulari en castellà

Tot i que les classes particulars a domicili són populars, anar a una acadèmia a fer classes de reforç té algunes avantatges que no poden oferir les particulars a domicili.

És per això, que volem exposar les característiques principals de les classes de reforç de CEEdukat:

  • A CEEdukat fa onze anys que ajudem als estudiants de primària, ESO i batxillerat i a gent adulta a comprendre i superar els reptes d’estudi de l’ensenyament actual.

    Som especialistes en reforç escolar!
  • Ambient d’estudi sense distraccions per a l’estudiant L’experiència ens ha ensenyat que, en les classes particulars a domicili, l’estudiant té moltes distraccions i no es concentra en l’estudi. L’aula de CEEdukat, en canvi, és un ambient d’estudi que permet la concentració de l’estudiant sense distraccions.
  • Les classes de reforç de CEEdukat són en grups reduïts i s’atén a cada estudiant de forma individual i personalitzada.

    A més, respectem les disposicions legals i mesures de seguretat vigents.
  • Horaris amplis i flexibles:

    Obrim els matins, les tardes i dissabtes al matí perquè pugueu triar l’horari més adequat. També obrim per Nadal i Setmana Santa.
  • Recuperació de classes:

    Si un dia no podeu venir a classe de reforç, podeu recuperar-la el dia del mes que us vagi més bé i no haureu de perdre mai hores.
  • Preus ajustats:

    Tenim paquets mensuals d’hores de reforç amb tarifes ajustades i variables perquè pugueu estudiar i planificar-vos l’estudi al vostre ritme.

    Els preus de CEEdukat solen ser més ajustats que els de les classes particulars a domicili perquè no hem cobrar el desplaçament i els professors poden atendre més estudiants per hora.
  • Classes presencials i en línia:

    Les restriccions imposades a les acadèmies a causa de la pandèmia del COVID-19 ens han fet desenvolupar mètodes d’ensenyament en línia de la mateixa qualitat i eficiència que les classes presencials. No notaríeu la diferència entre un mètode d’ensenyament i l’altre.

A CEEdukat sentim passió per l’ensenyament!

Demaneu-nos més informació enviant aquest formulari:

Formulari de contacte
Serveis
Obligatori
Obligatori

Derivades

1. Definició

La derivada d’una funció en un punt és el valor del pendent de la recta tangent en aquest punt.

El pendent o la inclinació (\[\varphi\]) de la línia de color blau (taxa de variació mitjana) és \[\frac{y_2-y_1}{x_2-x_1}\].

Però aquesta inclinació no coincideix amb la inclinació de la recta tangent en el punt de tangència \[x_1\] (línia de color carabassa). Les inclinacions coincidiran quan la diferència entre \[x_2\] i \[x_1 \enspace (h)\] sigui infinitament petita.

\[
lim_{h\to 0}\frac{y_2-y_1}{x_2-x_1}=lim_{h\to 0}\frac{y_2-y_1}{(x_1+h)-x_1}=lim_{h\to 0}\frac{f(x_1+h)-f(x_1)}{h}=lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
\]

Ara bé, si introduïm cadascuna de les funcions elementals en el la fórmula de la definició de derivada anterior i fem els càlculs necessaris, el resultat que obtenim és la funció derivada. La funció derivada és la funció que ens informa del pendent de la funció primitiva o sense derivar en qualsevol punt.

Exemple:

\[
\textbf{y=x²}
\\
lim_{h\to 0}\frac{f(x+h)²-f(x²)}{h}
\\
lim_{h\to 0}\frac{f(x+h)²-f(x²)}{h}
\\
lim_{h\to 0}\frac{x²+2xh+h²-x²}{h}
\\
lim_{h\to 0}\frac{h(2x+h)}{h}
\\
lim_{h\to 0}{2x+h}=2x
\\
\textbf {y’=2x}
\]

D’aquesta manera, obtenim la taula de derivades de les funcions elementals:

\[f(x)\]\[f'(x)\]
\[y=k\]\[y’=0\]
\[y=x\]\[y’=1\]
\[y=kx\]\[y’=k\]
\[y=x^n\]\[y’=nx^{(n-1)}\]
\[y=\ln x\]\[y’=\frac{1}{x}\]
\[y=e^x\]\[y=e^x\]
\[y=\log_a x\]\[y’=\frac{1}{x.ln a}\]
\[y=a^x\]\[y=a^x. \ln a\]
\[y=\sin x\]\[y’=\cos x\]
\[y=\cos x\]\[y’=-\sin x\]
\[y=\tan x\]\[y’=sec²x\]
\[y=\arcsin x\]\[y’=\frac{1}{\sqrt{1-x²}}\]
\[y=\arccos x\]\[y’=-\frac{1}{\sqrt{1-x²}}\]
\[y=\arctan x\]\[y’=\frac{1}{1+x²}\]

2. Propietats de les derivades:

Les propietats de les derivades són:

a) Derivada d’una suma/ diferència de funcions: \[[f(x)+g(x)]’=f'(x)+g'(x)\]

b) Derivada d’un producte de funcions: \[[f(x) \cdot g(x)]’=f'(x) \cdot g(x)+f(x) \cdot g'(x)\]

c) Derivada d’un quocient de funcions: \[[\frac{f(x)}{g(x)}]’=\frac{f'(x) \cdot g(x)-f(x) \cdot g'(x)}{[g'(x)]²}\]

3. Regla de la cadena

Si \[f(x)\] i \[g(x)\] són dues funcions derivables i \[h(x)\] és la funció composta d’aquestes dues funcions, la derivada d’ \[h(x)=f(x) ∘ g(x)= f[g(x)]\] és \[h'(x)=f'[g(x)] \cdot g'(x)\].

Exemple:

\[
f(x)=\sin x,g(x)=x²+2
\\
h(x)=f(x) ∘ g(x)=f[g(x)]=sin(x²+2)
\\
h'(x)=f'[g(x)] \cdot g'(x)=[\sin (x²+2)]’ \cdot (x²+2)’=cos(x²+2) \cdot 2x
\]

Per tant, la taula de derivades d’una funció composta és:

\[h(x)\]\[h'(x)\]
\[y=k\]\[y’=0\]
\[y=k \cdot h(x)\]\[y’=k \cdot h'(x)\]
\[y=h(x)^n\]\[y’=n \cdot h(x)^{n-1} \cdot h'(x)\]
\[y=\ln h(x)\]\[y’=\frac{h'(x)}{h(x)}\]
\[y=e^{h(x)}\]\[y=e^{h(x)} \cdot h'(x)\]
\[y=\log_a h(x)\]\[y’=\frac{h'(x)}{h(x).ln a}\]
\[y=a^{h(x)}\]\[y=a^{h(x)} \cdot \ln a \cdot h'(x)\]
\[y=\sin h(x)\]\[y’=\cos h(x) \cdot h'(x)\]
\[y=\cos h(x)\]\[y’=-\sin h(x) \cdot h'(x)\]
\[y=\tan h(x)\]\[y’=sec²h(x) \cdot h'(x)\]
\[y=\arcsin h(x)\]\[y’=\frac{h'(x)}{\sqrt{1-h²(x)}}\]
\[y=\arccos h(x)\]\[y’=-\frac{h'(x)}{\sqrt{1-h²(x)}}\]
\[y=\arctan h(x)\]\[y’=\frac{h'(x)}{1+h²(x)}\]

4. Aplicacions de les derivades

4.1 Monotonia i punts crítics d’una funció

La monotonia d’una funció es refereix al creixement i decreixement de la funció en cada interval del domini.

Els punts crítics d’una funció són els punts que anul·len la primera derivada (\[y’=0\]). Aquests punts són els possibles màxims, mínims i punts d’inflexió de la funció.

4.1.1 Monotonia, màxims i mínims

Els màxims i mínims són els punts en els quals canvia la monotonia o creixement de la funció.

El punt en el qual la monotonia de la funció canvia de decreixent a creixent, és un mínim. En aquest punt, la inclinació o pendent és zero, abans d’aquest punt és negativa i després és positiva.

Exemple:

PUNTS CRÍTICS, MÍNIM

\[
y=x²+4x+4\\
y’=2x+4=0\\
x=-2\\
y(-2)=(-2)²+4(-2)+4=0\\
\textbf {Mínim(-2,0)}
\]

El punt en el qual la monotonia de la funció canvia de creixent a decreixent, és un màxim. En aquest punt, la inclinació o pendent és zero, abans d’aquest punt és positiva i després és negativa.

\[
y=-x²+2x\\
y’=-2x+2=0\\
x=1\\
y=-(1)²+2 \cdot 1=1\\
\textbf{(1,1)}
\]

4.1.2 Curvatura i punts d’inflexió

Els punts d’inflexió són els punts en els quals canvia la curvatura de la funció. La curvatura indica el canvi de direcció de les tangents d’una funció entre dos punts de tangència.

La curvatura en un interval és positiva si la la gràfica de la funció està per sobre la de la recta tangent.

La curvatura en un interval és negativa quan la gràfica de la funció està per sota de la recta tangent.

Si una funció té curvatura positiva en un interval, tindrà un punt mínim en aquest interval. Si una funció té curvatura negativa en un interval, tindrà un màxim en aquest interval.

Per a determinar els punts d’inflexió, farem la segona derivada igual a zero \[y”=0\]. Si hi ha un canvi de signe (concavitat) en un punt, aquest punts és un punt d’inflexió.

Exemple:

\[
y=x³-3x²-5x+8
\\
y’=3x²-6x-5
\\
y”=6x-6=0
\\x=1
\]

Una altra manera de determinar si un punt singular és un màxim o un mínim, es fent la segona derivada i determinant el signe en aquest punt: si és positiu serà un mínim i si és negatiu serà un màxim.

Exemple:

\[
y=x²+4x+4 \rightarrow y’=2x+4 \rightarrow y”=2 \enspace \text{(convavitat positiva: mínim)}
\\
y=-x²+2x \rightarrow y’=-2x+2 \rightarrow y”=-2 \enspace \text{(concavitat negativa: màxim)}
\\
\]

4.2 Recta tangent

Una altra aplicació de les derivades és trobar l’equació de la recta tangent en un punt.

Per a resoldre exercicis de la recta tangent farem:

  1. La primera derivada de la funció
  2. Si en donen la \[m\] trobarem \[x_0\]. Si ens donen \[x_0\] trobarem la m.
  3. Calcularem \[y_0\] substituint \[x_0\] a l’equació \[y=f(x)\]
  4. Escriurem l’equació de la recta tangent.

Exemple:

\[
y=x²+6x-6, \enspace m=2\\
1. y’=2x+6=m\\
2. 2x_0+6=2 \rightarrow x_0=-2\\
3. y_0=(x_0)²+6x_0-6=(-2)²+6*(-2)-6=-14\\
4. y-y_0=m*(x-x_0) \rightarrow \textbf {y+14=2*(x+2)}\\
\]

\[
y=x²+6x-6, \enspace x_0=-2\\
1. y’=2x_0+6=m\\
2. m=2*-2+6=2\\
3. y_0=(x_0)²+6x_0-6=(-2)²+6*(-2)-6=-14\\
4. y-y_0=m*(x-x_0) \rightarrow \textbf {y+14=2*(x+2)}\\
\]

4.3 Optimització

És trobar els valors de les variables de la funció objectiu (funció que es vol maximitzar o minimitzar) tenint en compte les restriccions (limitació dels valors de les variables).

Per a resoldre els exercicis d’optimització farem:

  1. Analitzant la geometria plantejarem l’equació de la funció objectiu i de la restricció.
  2. Aïllarem una de les incògnites de la restricció (la que faci els càlculs posteriors més senzills) i la substituïrem a la función objectiu.
  3. Farem la primera derivada de la funció objetiu i la igualarem a zero.
  4. Resoldrem l’equació que en resulti.
  5. Substituint el resultat a la restricció trobarem el valor de la segona incògnita.
  6. Calcularem el valor de la funció objectiu.
  7. Determinarem si és un màxim o un mínim.

Exemple:

Hem de determinar quins valors de la longitud dels catets d’un triangle rectangle fan que l’àrea sigui màxima tenint en compte que la hipotenusa ha de fer 12 unitats de longitud:

DERIVADES_OPTIMITZACIO
\[
1.\\
A=\frac {x*y}{2} \enspace \text{(funció objectiu)}\\
h²=x²+y² \enspace \text{(restricció)}\\
2.\\
x=\sqrt{h²-y²}\\
A=\frac{\sqrt{h²-y²}*y}{2}\\
3.\\
A’=-\frac{2y²}{4*\sqrt{h²-y²}}+\frac{\sqrt{(h²-y²)}}{2}=0\\
4.\\
-\frac{2y²}{\sqrt{h²-y²}}+\sqrt{(h²-y²}=0\\
\frac{y²}{2*\sqrt{h²-y²}}=\frac{\sqrt{(h²-y²}}{2}\\
y²=(h²-y²)\\
y=\frac{h}{\sqrt2}=\frac{12}{\sqrt{2}}\approx 8.5\\
5.\\
x=\sqrt{h²-y²}=\sqrt{12²-(\frac{12}{\sqrt 2})²}=\frac{12}{\sqrt{2}}\approx 8.5\\
6.\\
A=\frac{\frac{12}{\sqrt{2}} * \frac{12}{\sqrt{2}}}{2}=38u²\\
7.A'(8)>0,A'(9)<0 \enspace \text{(és un màxim).}
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.