Mínim comú múltiple de polinomis

Mínim comú múltiple de polinomis

És el múltiple més petit que tenen en comú dos polinomis.

És calcula multiplicant tots els factors irreductibles (dels polinomis) comuns i no comuns elevats a l’exponent més gran. Si \[P(x)=(x3+x2−x−1)\]  i \[Q(x)=(x+1)\]:

\[
(x3+x2−x−1)=(x+1)^2∗(x−1)
\\
(x+1)=(x+1)\\\]

y el \[mcm\] serà \[(x+1)^2*(x-1)\].

El procediment per a calcular el mcm d’expressions algebraiques és similar al de fer-ho amb nombres.

Exemple:

\[\\[0.5cm]
\hspace{14pt}(x^2-9) \hspace{20pt}=(x+3)(x-3)
\\
\hspace{16pt} (x^2+6x+9)=(x+3)^2
\\[0.5cm]
\hspace{16pt} mcm(x^2-9, \hspace{12pt} x^2+6x+9)=(x+3)^2*(x-3)
\\[1cm]
b) \hspace{7pt} (x^3-7x^2+2x), \hspace{12pt} (x^4-3x^3-4x^2):
\\[0.5cm]
\hspace{12pt}(x^3-7x^2+2x)=x*(x-4)(x-3)
\\
\hspace{14pt}(x^4-3x^3-4x^2)=x^2*(x-4)(x+1)
\\[0.5cm]
\hspace{15pt} mcm(x^3-7x^2+2x, \hspace{12pt} x^4-3x^3-4x^2)=x^2*(x-4)(x+1)(x-3)
\\[1cm]
c) \hspace{7pt} (x^3+3x^2-4), \hspace{12pt} (x^4-3x^3-3x^2+11x-6), \hspace{12pt} (x^3-2x^2-5x+6):
\\[0.5cm]
\hspace{12pt}(x^3+3x^2-4)=(x-1)*(x+2)^2
\\
\hspace{14pt}(x^4-3x^3-3x^2+11x-6)=(x-3)*(x-1)^2*(x+2)
\\
\hspace{14pt}(x^3-2x^2-5x+6)=(x-3)*(x-1)*(x+2)
\\[0.5cm]
\hspace{15pt} mcm(x^3+3x^2-4,x^4-3x^3-3x^2+11x-6,x^3-2x^2-5x+6)=
\\
\hspace{12pt} (x-1)^2*(x+2)^2*(x-3)\][/latex]

  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Quant a l'autor

ceedukat administrator