Arxiu de categories Batxillerat

La matèria

Instruccions abans de començar

Introducció

La matèria són les coses que formen la realitat que percebem mitjançat els sentits. Són els objectes detectables i mesurables per mitjans físics que ocupen un lloc a l’espai i tenen energia. La matèria experimenta canvis en el temps.

Substància és la matèria de què estan formats els cossos. Es distingeixen entre elles per les propietats físiques, químiques i organolèptiques.

L’organització de la matèria que forma el nostre univers físic és:

1. Estructura atòmica

1.1 L’àtom

La matèria és feta d’àtoms. L’àtom té un nucli fet de protons (\[p^+\]) i neutrons (\[n^0\]) i una escorça per on orbiten els electrons (\[e^-\]).

Tots els àtoms són neutres elèctricament (tenen tants protons com electrons), però com que no tenen la darrera capa d’electrons (capa de valència) del tot plena, són inestables. Per aconseguir omplir la capa de valència, reaccionen amb altres elements i formen compostos. Els gasos nobles no reaccionen amb cap altre àtom perquè tenen la capa de valència del tot plena, és per això són monoatòmics.

Quan un àtom perd electrons o guanya electrons es transforma en un ió. Si els perd, resta amb càrrega positiva (ara té més protons que electrons) i diem que és un ió positiu o un catió. Si els guanya, resta amb càrrega negativa (té més electrons que protons) i diem que és un ió negatiu o un anió.

Una unitat de massa atòmica (u.m.a) són \[1,62.10^{-27 }Kg\], aproximandament la massa d’un protó o d’un neutró. Segons aquesta definició, la massa atòmica d’un àtom expressada en u.m.a (A) és el nombre de protons (Z) més el nombre de neutrons (N): A=Z+N.

\[1 u.m.a=1,62.10^{-27 }Kg\]

Per tant, podem saber el nombre de neutrons que té un àtom fent la diferència del nombre màssic (A) i el nombre de protons (Z) que ens indica la taula periòdica: N=A-Z. L’hidrogen és l’únic element de la taula periòdica que no té cap neutró.

Exemple:

\[
\mathbf{{}^{12}_{6}C}
\\
A=12
\\
Z=6
\\
N=12-6=6
\]

Si un àtom té un nombre de neutrons diferent de A-Z, diem que és un isòtop d’aquest element. Molts elements de la taula periòdica tenen isòtops i, de fet, el nombre màssic A d’un element és la massa atòmica ponderada de la massa de tots els isòtops d’aquest element.

\[
\displaystyle{\bar M=\frac{ \Sigma (\text{% abundància} \cdot M_a) }{100 }}
\]

Exemple:

\[\displaystyle{
Li-6: \textbf{7.59%}, M_a=6.015
\\
Li-7: \textbf{92.41%}, M_a=7.016
\\
\overline M_{Li}=\frac{\text{7.59%} \cdot 6.015+ \text{92.41%} \cdot 7.016 }{ 100 }=\mathbf{6.94 g.mol^{-1}}
\\( M_a \text { del liti que mostra la taula periódica )}
}
\]

1.2 Elements

Un element és la matèria de què estan formats els cossos amb propietats físiques i químiques que no es pot dividir en parts més petites. Estan classificats a la taula periòdica.

Un mol és la quantitat de substància que té \[6,023.10^{23}\] partícules (subatòmiques, atòmiques o moleculars).

Exemple:

\[\text{1 mol } H_2 =6,023.10^{23} molècules \, H_ 2
\\
\text{1 mol } Fe=6,023.10^{23} àtoms \, Fe
\\
\text{1 mol } e^-=6,023.10^{23} \, e^- …
\]

La massa atòmica d’un element és la massa d’un mol d’àtoms d’aquest element. És relativa a la massa atòmica de \[C^{12}\], el patró de referència. La trobem a la taula periòdica per a cada element.

Exemple:

\[
M_A (H)= 1,008 g.mol^{-1}
\\
M_A (O)=15,999 g.mol^{-1}…
\]

1.3 Molècules

Una molècula és una agrupació d’àtoms units per un enllaç covalent (compartició d’electrons entre dos àtoms). Els àtoms units per enllaços iònics (enllaç electroestàtic entre un anió un catió) formen xarxes cristal·lines. Una molècula és una substància pura composta.

La massa molecular d’una molècula és la suma de les masses atòmiques que formen la molècula.

Exemple:

\[M(H_2SO_4)= 2.1,008+1.32,064+4.15,999=98,076 \, g.mol^{-1}\]

La fórmula molecular d’un compost representa la naturalesa i el nombre d’àtoms que formen el compost. Per exemple, la molècula d’àcid sulfúric (\[H_2SO_4\]) conté dos àtoms d’hidrogen, un de sofre i quatre d’oxigen.

1.4 Model atòmic de Dalton

Teoria sobre la constitució de la matèria (John Dalton, 1808) segons la qual la matèria està feta d’àtoms indivisibles i immutables. Aquesta teoria justifica les relacions ponderals senzilles entre els composts químics:

  • Els elements químics estan constituïts per partícules discretes, diminutes i indivisibles, anomenades àtoms que romanen inalterables en qualsevol procés químic.
  • Els àtoms d’un mateix element són tots iguals en massa, mida i en qualsevol altra propietat física o química.
  • Els compostos químics estan formats per “àtoms de compost” (molècules), tots iguals entre si, és a dir, quan dos o més àtoms de diferents elements es combinen per formar un mateix compost ho fan sempre en proporcions de massa senzilles, definides i constants.
  • A les reaccions químiques, els àtoms ni es creen ni es destrueixen, només canvien la seva distribució.

Per a Dalton, les partícules dels elements gasosos estaven constituïdes per un sol àtom (H, O, CI, N…) i les dels compostos com l’aigua o el clorur d’hidrogen estaven formades per sols dos àtoms diferents (HO, ClH).

Això no podia explicar la llei dels volums de combinació de Gay-Lussac segons la qual «hi ha una relació senzilla de nombres enters entre els volums dels gasos d’una reacció química».

Exemple:

\[
2H_2+1O_2 \rightarrow 2H_2O
\\
1H_2+1Cl_2 \rightarrow 2HCl
\]

1.5 Les hipòtesis d’Avogadro

  1. Igual volum de gasos, en les mateixes condicions de temperatura i pressió, contenen el mateix nombre de molècules.
  2. Els elements gasosos, com ara hidrogen, nitrogen i oxigen, estan constituïts per molècules diatòmiques que, en una reacció química, es poden separar en dos àtoms.

Segons Avogadro:

Les molècules són molt petites comparades amb l’espai que les separa en els gasos.

En una reacció química una molècula de reactiu reacciona amb una o més molècules d’un altre produint una o més molècules de producte.

Una molècula no pot reaccionar amb un nombre no sencer de molècules, perquè la unitat mínima de reactiu és la molècula.

Per tant, hi ha d’haver una relació directa entre els volums i el nombre de molècules dels gasos:

Això justificà la llei de la combinació de volums de Gay-Lussac.

1.6 Compostos

Són substàncies pures que es poden descompondre en els seus elements emprant processos químics. Els diferents elements es combinen en proporcions fixes. Les propietats dels compostos són diferents de les propietats dels elements que els formen. Es representen amb fórmules químiques (\[H_2SO_4, H_2O, SO_3…\]).

Exemple:

L’àcid sulfúric, l’aigua, la sal de cuina…

1.6.1 Composició centesimal

La composició centesimal d’un compost és el tant per cent en massa que hi ha de cadascun dels elements que el formen. És una característica de cadascun.

La fórmula empírica indica la naturalesa i proporció dels elements del compost. La fórmula molecular indica el nombre d’àtoms que hi ha de cada element.

Es pot calcular, o bé (1) la fórmula empírica i molecular d’un compost a partir de la composició centesimal, o bé (2) la composició centesimal a partir de la fórmula molecular

Per a calcular la fórmula molecular a partir de l’empírica ens cal la massa molecular del compost.

Exemple:

(1) Per a calcular la fórmula molecular a partir de la composició centesimal:

La composició centesimal d’un compost que té una massa molecular de 140 g/mol és: 51,42 % de C, 40 % de N; 8,57 % de H. Trobeu-me la fórmula molecular.

\[
\displaystyle{
\\[0.5cm]
\text{1. La massa de cada element en 100g del compost és:}
\\
C: 51,42 g
\\
N: 40 g
\\
H: 8,57 g
\\[0.5cm]
\text{2. Els mols de cada element són:}
\\[0.5cm]
C: 51,42 g~C \cdot \frac{1 mol~C} {~12g~C}=4,29 \text{ mols C}
\\
N: 40 g ~N \cdot \frac{~1 mol~N} {~14g~N}=2,86 \text{ mols N}
\\
H: 8,57 g \cdot \frac{~1 mol~H} {~1g~H}=8,57 \text{ mols H}
\\[0.5cm]
\text{3.Trobem la relació molar de cada component del compost dividint}
\\
\text{ pel nombre més petit de mols (2,86):}
\\[0.5cm]
C: \frac{ 4,29 } { 2,86 }=1,5 \enspace
N: \frac{ 2,86 } { 2,86 }=1 \enspace
H: \frac{ 8,57 } { 2,86 }=3
\\[0.5cm]
\text{4.Per tant, la fòrmula empírica i el pes-fórmula és:}
\\[0.5cm]
C_3 N_2 H_6 \rightarrow M_{fórmula} =12 \cdot 3+2 \cdot 14+6 \cdot 1=70g
\\[0.5cm]
\text{5. I la fórmula molecular és:}
\\[0.5cm]
\frac{\text{pes-fórmula molecular}}{\text{pes-fórmula empírica}}=\frac{ 140g } { 70g }=2
\\[1cm]
\mathbf {Fórmula \, molecular: C_6 N_4 H_{12}}
}
\]

(2) Per a calcular la composició centesimal a partir de la fórmula molecular, usarem l’expressió:

\[
\displaystyle
{
\%C=n_ {element} \cdot {\frac{M_{element}} {M_{compost}}} \cdot 100
}
\]

Exemple:

\[
\displaystyle
{
\text{Si la fórmula molecular del compost és } C_6 N_4 H_{12}:
\\[0.5cm]
\text{1. Primer calculem la massa molecular del compost:}
\\
M=6.12+4.14+12.1=140 ~g/mol
\\[0.5cm]
\text{2. Després calculem la composició centesimal de cada element:}
\\[0.5cm]
\%C= {\frac {6 \cdot 12 ~g/mol } { 140 ~g/mol }} \cdot 100= \mathbf{51,43\%}
\\
\%N= {\frac {4 \cdot 14 ~g/mol } { 140 ~g/mol }} \cdot 100= \mathbf{40\%}
\\
\%H= {\frac {12 \cdot 1 ~g/mol } { 140 ~g/mol }} \cdot 100= \mathbf{8,57\%}
}
\]

2. Mescles i barreges

Una mescla o barreja és una combinació de substàncies pures. Cada component d’una mescla o barreja conserva les seves propietats físiques i químiques i es poden separar per mètodes físics.

Exemple:

Aigua amb sal, l’aire, aigua i oli, aigua i esperit de vi, els aliatges…

(Vegeu Mescles i barreges per a saber-ne més).

3. Reaccions químiques i estequiometria

3.1 Reaccions químiques

Una reacció química és el canvi o transformació d’un o més elements químics o compostos (reactius) per a formar altres elements químics o compostos amb propietats diferents (productes).

En una reacció química és trenquen i es reorganitzen els enllaços dels reactius originant els productes. Les reaccions químiques s’expressen mitjançat una equació química. Si la reacció desprèn energia, diem que és exotèrmica. Si li hem de donar energia per tal que es produeixi, diem que és endotèrmica.

Exemple:

\[
H_2 S O_4+2NaOH~ ⇌ ~Na_2 SO_4+2H_2 O
\\
C_6 H_{12} O_6+6O_2~ ⇌ ~6CO_2 + 6H_2 O
\]

3.2 Llei conservació de la massa

La massa dels productes d’una reacció química és igual a la massa dels reactius de la reacció (Antoine L. Lavoisier, 1785).

3.3 Lleis ponderals

Conjunt de lleis relatives al pes que constitueixen el fonament de l’estequiometria.

La formulació de les lleis ponderals arrenca, històricament, del principi de la conservació de la matèria de Lavoisier:

3.3.1 Llei de les proporcions recíproques o equivalents

Els pesos de dos elements (o bé múltiples simples d’aquests pesos) que reaccionen amb el mateix pes d’un tercer element poden també reaccionar entre ells (Jeremies Benjamin Richter, 1792).

Exemple:

\[
\displaystyle
{
Substància 1 (Cl_2 O): \frac{2×35.45} {16}=4,431
\\
Substància 2(P_2 O_3): \frac{2×30.97} {3×16}=1,290
\\
\text{Relació entre el pes del clorur i del fòsfor}: \frac{ 4.431 } { 1.290 }=\mathbf {3.435}
\\
Substància 3 (PCl_3): \frac{3×35.45} {1×30.97}=\frac{ 106.35 } { 30.97 }=\mathbf {3.434}
}
\]

3.3.2 Llei de les proporcions definides o constants

Dos o més elements que es combinen per formar un compost ho fan sempre en la mateixa proporció (Louis Joseph Proust, 1799).

Exemple:

\[
\displaystyle
{
H_2 O \rightarrow \frac{ 2 \, g \, d’hidrògen } { 16 \, g \, d’oxígen }= \mathbf{\frac{1} {8}}
}
\]

3.3.3 Llei de les proporcions múltiples

Si dos elements es combinen per formar més d’un compost, els pesos d’un dels elements que es combinen amb el mateix pes de l’altre estan en la relació de nombres enters simples (John Dalton, 1803).

Exemple:

\[
\displaystyle
{
Cu O \rightarrow \frac{ 1×63.55 \, g \, de \, coure} {16 \, g \, d’oxígen }
\\
Cu_2 O \rightarrow \frac{ 2×63.55 \, g \, de \, coure} {16 \, g \, d’oxígen }
}
\]

Per tant, la relació de les masses de coure és 1:2.

3.4 Estequiometria

L’estequiometria és la branca de la química que estudia les relacions numèriques dels reactius i productes en una reacció química.

Exemple:

En la reacció de combustió de la glucosa, totes les relacions estequiomètriques dels reactius i productes són:

\[
\displaystyle
{
C_6 H_{12} O_6+6O_2 ⇌ 6CO_2 + 6H_2 O
\\[0.5cm]
\frac{ 1 mol \, C_6 H_{12} O_6 } { 6 mols \, O_2 }, \frac{ 1 mol \, C_6 H_{12} O_6 } { 6 mols \, CO_2 }, \frac{ 1 mol \, C_6 H_{12} O_6 } { 6 mols \, H_2 O }
\\
\frac{ 6 mols \, O_2 } { 6 mols \, CO_2 }=\frac{ 1 mols \, O_2 } { 1 mols \, CO_2 }, \frac{ 6 mols \, O_2 } { 6 mols \, H_2 O }=\frac{ 1 mols \, O_2 } { 1 mols \, H_2 O }
\\
\frac{ 6 mols \, CO_2 } { 6 mols \, H_2 O }=\frac{ 1 mols \, CO_2 } { 1 mols \,H_2 O }
}
\]

Les relacions inverses també són possibles.

3.5 Càlculs

Per a calcular les diferents quantitats que reaccionen o es formen en una reacció química, a més de l’estequiometria de la reacció ens caldrà saber la densitat i la massa atòmica o molecular d’algun dels components de la reacció.

Si algun dels components és gasós, haurem de fer servir la llei dels gasos ideals per a saber quants mols reaccionen o es produeixen. També hem d’entendre l’ús dels factors de conversió.

Exemples:

\[
\displaystyle
{
C_6 H_{12} O_6 +6O_2 \rightarrow 6CO_2+6H_2 O
\\
M_A( C )=12.001 \,g.mol^{-1}, \,M_A( H )=1.008 \,g.mol^{-1}, \,M_A( O )=15.999 \,g.mol^{-1}, \\
M(C_6 H_{12} O_6 )=180.096g
\\[0.5cm]
\textbf{1. Relacions estequiomètriques}
\\[0.5cm]
\textbf{a. Quants grams d’} H_2 O \textbf{ produiran 50g de glucosa?}
\\
50g \,glucosa \cdot { \frac{mol \, glucosa } { 180.096g \, glucosa } } \cdot { \frac{6 mols \, H_2 O } { 1 mol \, glucosa } } \cdot { \frac{18g \, H_2 O } { 1 mol \, H_2 O} }= \textbf{29.841 g } H_2 O
\\[0.5cm]
\textbf{b. Quants litres de } CO_2 \text{ produiran 100c.c d’oxígen en c.n?}
\\
100cm³ \, O_2 \cdot {\frac{1L} {1 000cm³}} \cdot { \frac{1 mol \, O_2} {22.386 L }} \cdot { \frac{6 mols \, CO_2} {6 mols \, O_2} } \cdot { \frac{22.386L} {1 mol} }=\mathbf{0.1 mols \, CO_2}
\\[0.5cm]
\textbf{c. Amb quantes molècules d’oxigen reaccionaran 25g de glucosa?}
\\
25g \, glucosa \cdot { \frac{1 mol \, glucosa } { 180.096g \, glucosa }} \cdot { \frac{ 6 mols \, O_2} { 1 mol \, glucosa} } \cdot { \frac{6.023×10^{23} \, molècules} {1 mol}}
\\
=\mathbf{5.016×10^{23} \, molècules \, O_2}
\\[0.5cm]
\textbf{2. Amb reactiu limitant}
\\[0.5cm]
\textbf{a. Quants grams d’ aigua produiran 50g de glucosa i 50g d’oxígen?}
\\
50g \, glucosa \cdot { \frac{1 mol \, glucosa } { 180.096 g \, glucosa }}=0.278 mols \, glucosa
\\
50g \, O_2 \cdot {\frac {1 mol \, O_2 }{ 15.999g \, O_2 }}=3.
125 \, mols O_2
\\
\frac{ 1 mol \, glucosa }{ 6 mols \, O_2 }=\frac{ 0.278 mols \, glucosa }{x \,mols \, O_2 } \rightarrow x=1.668 mols \, O_2 < 3.125 \, mols O_2
\\
\textbf{Per tant, el reactiu limitant és la glucosa}.
\\
0.278 \, mols \, glucosa \cdot {\frac{6H_2O}{1glucosa}}=1.668 \, mols \, d’H_2O
\\
1.668 \, mols \, d’H_2O \cdot {\frac{18 \, g \, H_2O}{1 \, mol \, d’H_2O}}=\mathbf{30.024 \, g \,d’H_2O}
\\[0.5cm]
\textbf{3. Amb rendiment de la reacció}
\\
\textbf{Si el rendiment de la reacció és del 67%, quan grams d’aigua es produiran?}
\\
1.668 \, O_2 \cdot { \frac{1mols \, H_2 O} {1 mols \, O_2} } \cdot { \frac{18.015 g \, H_2 O } {1 mol \, H_2 O} } \cdot67\%=\mathbf{20.133 g \, H_2 O}
\\[0.5cm]
\textbf{4. Amb puresa dels reactius}
\\[0.5cm]
\textbf{10 g de mineral de zinc del 60% de puresa reacciona amb}
\\
\textbf{20ml d’àcid sulfúric 98.6% i densitat 1.823g/ml.}
\\
\textbf{Determinar el volum d’hidrogen produït a 25ºC i 740mmHg.}
\\
Zn⁰ + H_2 S O_4 \rightarrow Zn( SO_4)+H_{2_(g) }
\\
60\% \,10g Zn \cdot { \frac{ mol \, Zn } { 65.38 g \, Zn } } \cdot { \frac{1 mol \, H_2 } { 1 mol \, Zn } }=0.0918 mols \, H_2
\\
V=\frac{ n \cdot R \cdot T }{ P }=\frac{ 0.0918 \cdot 0.082 \cdot (273+25) }{ 740mmHg \cdot {\frac{1 atm }{ 760mmHg}}} =\textbf{ 2.303 L.}
}
\]

4. Formes d’agregació de la matèria

4.1 Estat sòlid

Estat de la matèria en què les molècules que la componen, a causa de les forces de cohesió, tenen un moviment molt restringit, limitat a una vibració entorn d’una posició d’equilibri fixa.

Els sòlids poden classificar-se en amorfs i cristal·lins, en funció de si presenten una estructura regular en la disposició de les partícules que els componen. En els polímers coexisteixen estructures regulars i cristal·lines amb zones que presenten una estructura irregular, amorfa.

L’estructura d’un sòlid té un paper fonamental en les seves propietats. Per exemple, el grafit pur i el diamant són formats per àtoms de carboni i només es diferencien per la xarxa cristal·lina.

Els sòlids cristal·lins tenen un punt de fusió ben definit i presenten comportaments diferents segons la direcció en la qual fem la mesura.

En presència d’un solvent molt polar com l’aigua, produeixen solucions amb ions en la fase líquida, de manera que la solució és conductora del corrent elèctric. Els sòlids amorfs no són solubles en els solvents comuns.

Classes de sòlids: metalls, polímers, materials ceràmics, compostos, biomaterials i semiconductors.

Les propietats físiques del sòlids són: elèctriques, òptiques, fotovoltaiques, dielèctriques, mecàniques, termomecàniques, electromecàniques i termoelèctriques.

Les lleis que estudien els sòlids són la conservació de la massa, la conservació de la quantitat de moviment, la conservació de l’energia i l’entropia.

La física de l’estat sòlid estudia les propietats físiques dels materials sòlids utilitzant disciplines tals com la mecànica quàntica, la cristal·lografia, l’electromagnetisme i la metal·lúrgia física. La física de l’estat sòlid forma la base teòrica de la ciència de materials.

La mecànica dels sòlids és la branca de la física que estudia el comportament dels sòlids. Es divideix en:

Mecànica de sòlids rígids: estudia el moviment i l’equilibri mecànic.

Mecànica del sòlids deformables: n’estudia el comportament ( la tensió, la deformació, l’elasticitat, la plasticitat i la flexió) quan les forces i canvis exteriors el deformen.


4.2 Estat líquid

L’estat líquid és l’estat de la matèria en el qual les molècules resten relativament lliures i poden canviar llur posició respectiva, però les forces de cohesió les obliguen a mantenir-se en un volum fix.

Com els sòlids, els líquids són pràcticament incompressibles, però s’adapten a la forma del recipient que els conté.

En el Sistema Internacional, la unitat de capacitat és el litre. La unitat per a mesurar el volum dels sòlids i grans volums de líquids és el m³.

Les característiques macroscòpiques dels líquid són: la viscositat, la tensió superficial, la untuositat i la capil·laritat.

Les propietats òptiques, elèctriques i calorífiques dels líquids són: la transparència, l’índex de refracció, la conductivitat elèctrica, la capacitat dielèctrica i la conductivitat tèrmica.

La mecànica de fluids formada per la hidroestàtica (principi de Pascal i principi d’Arquimedes) i la hidrodinàmica estudia l’efecte de les forces sobre els fluids (líquids i gasos) i el seu moviment.

4.3 Estat gasós

Estat de la matèria en què les molècules que el componen resten poc lligades entre elles per les forces de cohesió. No presenta ni una forma ni un volum definits, sinó que sempre omple totalment i uniformement el recipient que el conté.

Les propietats físiques macroscòpiques d’un gas són: la pressió, la temperatura, el volum específic i la densitat.

La teoria cinètica molecular estudia el comportament microscòpic dels gasos i permet explicar-ne el comportament macroscòpic.

El moviment de les molècules i els àtoms determina la temperatura del sistema. En augmentar la temperatura, també augmenta el moviment lineal, rotacional o vibratori dels àtoms i molècules d’un gas. En canvi, en els sòlids sols fa augmentar la vibració de les molècules atès que l’estructura cristal·lina evita els moviments lineals o rotatoris.

El moviment brownià és un model matemàtic que s’utilitza per descriure el moviment aleatori de les partícules immerses a un fluid.

Les atraccions o repulsions entre les partícules d’un gas (forces intermoleculars de Van der Waals) són importants per a la determinació de les propietats físiques del gas.

Les característiques dels gasos són:

  • Baixa densitat i viscositat relatives comparades amb els estats sòlid i líquid.
  • Són compressible, a diferència dels sòlids i líquids.
  • Es difonen amb facilitat.

(La difusió molecular és el transport de matèria produït pel moviment molecular a l’atzar. Es dóna en tots els estats de la matèria, bé que el procés és molt més lent en sòlids que en líquids o gasos -difusió gasosa. El resultat final és sempre el transport de matèria d’un lloc on la concentració és més elevada en un altre on no ho és tant, fins a arribar a una igualtat de concentracions.)

La solubilitat d’un gas en un líquid minva amb la temperatura.

4.3.1 Les lleis dels gasos

4.3.1.1 Llei de Dalton dels gasos (o de les pressions parcials)

La pressió que fa una barreja de gasos és igual a la suma de les pressions parcials que fa individualment cadascun dels gasos:

\[\Sigma p_i=P\]

La pressió parcial d’un gas és la pressió que faria si ocupés tot sol el volum de la barreja a la mateixa temperatura:

\[\displaystyle {p_i=\frac{n_i \cdot R \cdot T}{V}}\]

Per tant,

\[\displaystyle {P=\Sigma p_i= \frac{\Sigma n_i \cdot R \cdot T}{V}}\]

Exemple:

\[
\displaystyle
{
5 mols \, O_2, \, 3 mols \, H_2, \, 1 mol \, N_2
\\[0.5cm]
V= 10L, \, T=250K
\\
p_{ O_2 }= \frac { 5 \cdot 0.082 \cdot 250} { 10 }=\frac { 41 } { 4 }\, atm
\\
p_{ H_2 }= \frac { 3 \cdot 0.082 \cdot 250} { 10 }=\frac { 123 } { \, 20 }\, atm
\\
p_{ O_2 }= \frac { 5 \cdot 0.082 \cdot 250} { 10 }=\frac { 41 } { 4 }\, atm
\\
P=\frac { 41 } { 4 }+\frac { 123 } { \, 20 }+\frac { 41 } { 4 }=\mathbf {\frac { \,533} { 20 }\, atm}
}
\]

4.3.1.2 Llei de Boyle

A temperatura constant, el producte de la pressió d’un gas ideal pel volum és sempre constant: \[P \cdot V= constant\]

Exemple:

\[
\displaystyle
{
P_1=2 atm \enspace \, P_2=?
\\
V_1=5L \quad \quad V_2=3L
\\[0.5cm]
P_1 \cdot V_1=P_2 \cdot V_2 \rightarrow P_2=\frac{ P_1 \cdot V_1 } { \,\,V_2 }=\frac{ 2 \cdot 5 } { 3 }=\mathbf {\frac{10} {3} \, L}
}
\]

4.3.1.3 Llei de Gay-Lussac

La pressió que fa un gas ideal sobre les parets del recipient que el conté és proporcional a la temperatura del gas: \[\frac {P} {T}=constant \].

Exemple:

\[
\displaystyle{
P_1= ? \quad \quad \quad P_2=10 \, atm
\\
T_1=300K \quad T_2=450K
\\[0.5cm]
\frac {P_1} {T_1}=\frac{ P_2} { T_2} \rightarrow P_1=P_2 \cdot \frac { T_1 } { T_2 }=\frac{10 \cdot 300 } { 450 }=\mathbf {\frac{20} {3} \, atm}
}
\]

4.3.1.4 Llei de Charles (o dels volums)

A pressió constant, el volum és directament proporcional a la temperatura absoluta del gas:\[\frac{V}{T}=constant\]

Exemple:

\[
\displaystyle
{
T_1=225K \quad T_2=100K
\\
V_1=? \quad \quad \quad V_2=3L
\\[0.5cm]
\frac{V_1}{T_1}=\frac{V_2}{T_2} \rightarrow V_1=\frac{ V_2 \cdot T_1 }{ T_2 }=\frac{ 3 \cdot 225 }{ 100 }=\mathbf {\frac{27} {4} \,L}
}
\]

4.3.1.5 Lleis d’Avogadro (primera hipòtesi)

El volum ocupat per un gas ideal és proporcional al nombre de mols de gas:\[\frac{V}{n}=constant\]

Segons això, en condicions normals (0ºC, 1atm), el volum molar d’un gas és:

\[
\displaystyle{
\frac{ V } { n }=\frac{ R \cdot T } { ~P }=\frac{ 0.082 \cdot 273 } {1 }=22.386 \, L \cdot mol^{-1}
}
\]

4.3.1.6 Lleis dels gasos ideals o perfectes

De la combinació de les tres lleis anteriors es dedueix que la relació entre la pressió, el volum i la temperatura d’una massa de gas és:

\[
\displaystyle{
P \cdot V= k \cdot T \rightarrow \frac{ P \cdot V }{ T }=k \rightarrow \frac {P \cdot V }{ n \cdot T }=k
\\
{ P \cdot V }= n \cdot R \cdot T
}
\]

4.4 Canvis d’estat

Un canvi d’estat és una transformació física (no hi ha reacció química) en la qual una substància canvia l’estat d’agregació de les partícules mercès a l’absorció d’energia tèrmica.

Quan s’escalfa un sòlid (o un líquid), les partícules absorbeixen energia debilitant els enllaços i es forma l’estat líquid (o gasós). Si es refreda un líquid (o un gas), s’allibera energia i succeeix el procés invers.

Els canvis d’estat són:

  • De sòlid a líquid: fusió
  • De líquid a gas: evaporació
  • De gas a líquid: condensació
  • De líquid a sòlid: solidificació

Algunes substàncies passen de sòlid a gas sense passar per l’estat líquid. A aquest canvi d’estat se l’anomena sublimació directa. Al procés invers, se l’anomena sublimació inversa.

Mentre s’està produint un canvi d’estat, la temperatura no varia.

El bescanvi de calor entre estats es calcula fent:

\[Q=m \cdot c_e \cdot \Delta T\]

I en un canvi d’estat és:

\[Q=m \cdot \lambda\]

Exemple:

\[
\displaystyle{
\textbf{Calculeu la calor que cal per a escalfar un tros de gel de 500g de -20ºC a 50ºC.}
\\
C_e (gel) = \frac{0,5 cal} {\,g \cdot ºC}
\\
\lambda_f ( gel )=334 KJ/Kg
\\
C_e ( aigua )= \frac{ 1 cal } { g \cdot ºC }
\\[0.5cm]
Q_{total}=Q_{ (-20ºC a 0ºC) }+Q_{fusió}+Q_{( 0ºC a 50ºC )}
\\
a. \, Q_{ (-20ºC \,a \,0ºC) }=m_{gel} \cdot c_e( gel ) \cdot \Delta T=500g \cdot 0.5 \frac{ cal } { g \cdot ºC } \cdot ( 0-(-20) )=5 000 \,cal
\\[0.5cm]
b. \, Q_{fusió}=m ( gel ) \cdot \lambda_f( gel )=500 \,g \cdot 80.16 { cal } { \,g }=40 080 \,cal
\\
[\frac{334{ KJ }} { Kg } \cdot {\frac{1 000 J} {\, 1 KJ}} \cdot {\frac{0.24 \,cal } { \,1 J }} \cdot { \frac{\,1 Kg } { 1 000 g} }=80.16 \frac{ cal } { \,g }]
\\[0.5cm]
c. \,Q_{( 0ºC \,a \,50ºC )}=m_{aigua} \cdot c_e( aigua ) \cdot \Delta T=500g \cdot {1\frac{ \,cal } { g \cdot ºC }} \cdot ( 50-0 )=25 000 \,cal
\\[0.5cm]
Q_{total}=5 000+40 080+25 000=\mathbf{70 080 \,cal.}
}
\]
La matèria, diagrama canvi de fase
\[
\displaystyle{
\textbf{Calculeu la temperatura final quan un tros de ferro a 50ºC de 200g }
\\
\textbf{s’introdueix en 100ml d’aigua a 10ºC.}
\\
C_e(ferro)=450{\frac {\,\,J} {Kg \cdot K }}
\\
C_e( aigua )=4 180 {\frac {\,\,J} {Kg \cdot K }}
\\[0.5cm]
\textbf{El calor cedit pel ferro (-) és absorbit per l’aigua (+):}
\\
-Q_{ferro}=-m_{ferro} \cdot c_e( ferro ) \cdot \Delta T=-0.2 Kg \cdot 450{\frac {\,\,J} {Kg \cdot K }} \cdot ( t_f-323 )=29 070-90t_f
\\
+Q_{aigua}=+m_{aigua} \cdot c_e( aigua ) \cdot \Delta T
\\
0.1Kg \cdot 4180 { \frac{\,\,J } { Kg \cdot K} } \cdot ( t_f-283 )=418t_f-118294
\\
-Q_{ferro}=+Q_{aigua} \rightarrow 29070-90t_f=418t_f-118294
\\
t_f=\mathbf {290.1K\, (17.1ºC)}
}
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.


Mescles i barreges

Instruccions abans de començar

1. Definicions

1.1 Mescla o barreja

Composició química de diferents substàncies pures. En una mescla, cada component manté les seves propietats químiques. Es poden separar per mètodes físics.

Poden ser homogènies o heterogènies:

  • Les mescles homogènies tenen un aspecte uniforme i els components no es poden diferenciar a simple vista o amb un microscòpic òptic.

    Una mescla homogènia sòlida és un aliatge. Si és líquida és una dissolució. Una mescla de gasos sempre és homogènia.
  • Els components de les barreges heterogènies es poden distingir a simple vista. Les propietats d’aquesta mescla no són uniformes.

1.2 Dissolució

Barreja homogènia de substàncies diferents de components separables. Poden ser sòlides, líquides, gasoses o una combinació d’aquests estats.

1.3 Concentració

La concentració és el quocient de la quantitat de solut (substància en menys proporció) i la quantitat de dissolvent (substància en més proporció).

L’expressem com massa de solut/ massa de dissolvent, volum de solut/ volum de dissolvent o bé de massa de solut/ volum de la dissolució. S’han de conèixer les substàncies i la fórmula de la concentració (molalitat, molaritat, fracció molar o normalitat) per a poder calcular-ne la concentració:

Per a transformar una d’aquestes expressions de concentració en una altra ens caldran les equivalències de n (mols) <-> m (massa), de massa (m) <-> volum (v) i de volum <-> capacitat. Per tant, per a la primera relació ens cal la massa atòmica o molecular (M), per a la segona la densitat (ρ) i l’equivalència 1dm³=1L per a la tercera. Recordeu també que 1cm³=1ml.

La densitat relaciona la massa total i no pas sols el solut amb el volum total de la dissolució. Per tant, no és una expressió de la concentració.

\[
\begin{matrix}
m \text{( molalitat )} & \frac {n ( \text{mols de solut)}}{ \text{Kg de dissolvent}} \\
M \text{( Molaritat)} & \frac{n \text{( mols de solut )}}{ \text{L de dissolució }} \\
N \text{( normalitat )}& \frac{ \text{equivalents gram del component i }}{ \text{L de dissolució }} \\
%( m/m ) & \frac{ \text{massa de solut}}{ \text{massa de la dissolució }} \cdot 100 \\
%( v/v) & \frac{ \text{volum de solut}}{ \text{volum de la dissolució }} \cdot 100 \\
g/l & \frac{ \text{grams de solut }}{ \text{Litres de dissolvent }} \\
x_i \text{( fracció molar )} & \frac{n_i \text{(mols del component i)}}{n_t \text{ ( mols totals )}} \\
ppm \text{( part per milió )} & \frac{ p \text{(parts del component i)}}{\text{P (parts totals) }}
\end{matrix}
\]

Un equivalent gram és la massa d’una substància que es combina amb una quantitat fixa d’una altra en una reacció.

En una reacció àcid-base, el nombre d’equivalents-gram \[\nu\] és la relació de la massa molecular de la substància i el seu nombre d’oxonis (àcids) o d’hidròxids (base): \[\nu=\frac{\mu}{(OH^-/H^+)}\].

La relació entre la normalitat i la molaritat d’una dissolució és: \[N= M \cdot \nu.\]

Exemple:

Calcular la molalitat, la molaritat, el % (m/m), els g/L i la fracció molar d’una dissolució de 40g de glucosa (\[C_6 H_ 6 O_6\]) en 100 ml d’aigua:

\[
\textbf{Dades:}
\\[0.5cm]
M_a( C )=12g \cdot mol^{ -1 }, M_a(H)=1g \cdot mol^{-1}, M_a( O )=16g \cdot mol^{ -1 }
\\
\text{massa de glucosa ( solut )}=40g
\\
\text{volum de dissolvent} ( H_2 O )=100ml
\\
\text{massa dissolvent} ( H_2 O )=100g
\\
\text{mols dissolvent} ( H_2 O )=100g \cdot \frac{1 mol H_2 O}{ 18g }=5,56 mols H_2 O
\\[0.5cm]
\textbf{Resolució:}
\\[0.5cm]
\text{1. Per a transformar els grams (massa) a mols ens cal la } M_m \text{de la glucosa:}
\\
M( C_6 H_6 O_6 )=12 \cdot 6+ 1 \cdot 6+16 \cdot 6=174g/mol
\\
40g \; glucosa \cdot {\frac{1 mol}{174g}}=\mathbf{0,23 \; mols \; glucosa}
\\
\text{I per a transformar el volum d’aigua a massa la densitat} (\rho_{H_2 O}=1Kg/L):
\\
100ml H_2 O \cdot {\frac{ 1L }{ 1 000ml }}=\mathbf{0,1L}
\\
0,1L \cdot {\frac{1Kg}{1L}}=\mathbf {10^{ -1 }Kg}
\\
\text{2. Calculem les expressions de concentració:}
\\
\text{m(molalitat)}=\frac{n}{\text{Kg de dissolvent}}=\frac{ 0,23 }{ 10^{ -1 }}=\mathbf{2,30m}
\\
\text{M( molaritat )}= \frac{ n }{{\text{L dissolució} }}=\frac{ 0,23 }{ 0,1 }= \mathbf{ 2,30M }
\\
\text{( \% m/m )}=\frac{ \text{massa solut} }{ \text{massa dissolució}}=\frac{ 40g }{ 140 \text{g dissolució}}=\mathbf{ 0,29\% }
\\
\text{g/L}= \frac{ \text{grams solut} }{ \text{Litres dissolució} }=\frac{ 40g }{ 0,1L }=\mathbf{400g/L}
\\
x_{ C_6 H_6 O_6 }=\frac{ \text{ mols glucosa} }{ \text{mols dissolució} }=\frac{ ~~0,23 }{0,23+5,56 }=\mathbf{0,040 \rightarrow 4\%}
\\
x_{ H_2 O }=100\%-4\%=\mathbf{96\%}.
\]

2.1 Mètodes de separació

MètodePer a separar
CentrifugacióUn sòlid en suspensió d’un líquid
Cristal·litzacióUn sòlid dissolt en un líquid
DecantacióLíquids no miscibles
Destil·lacióLíquids miscibles
EvaporacióUn sòlid dissolt en un líquid
Extracció sòlid-líquidUn sòlid d’un líquid
Extracció líquid-líquidLíquids miscibles
FiltracióLíquids de sòlids en suspensió
SedimentacióLíquids de sòlids en suspensió
SublimacióSòlids

3. Dilucions

Una dilució és una operació mitjançant la qual s’augmenta la proporció de solvent respecte al solut d’una solució i, per tant, la concentració minva.

Per a resoldre exercicis de dilucions, primer calcularem la massa o els mols de la solució diluïda. Després determinarem el volum de la part alíquota de dissolució concentrada que haurem de prendre per a obtenir la concentració de la diluïda.

Exemple:

Quin volum d’àcid sulfúric 98% i densitat 1,84g/cm³ cal per a preparar 100ml d’una dissolució 1M? I sí és 20% (m/m) i de densitat 1,14g/cm³?

\[
\textbf{Dades:}
\\[0.5cm]
H_2 S O_4 \; 98\%, ~ \rho=1,84g/cm³
\\ H_2 S O_4 \; 20\%, ~ \rho=1,14g/cm³
\\
M( H_2 S O_4)=98g \cdot mol^{-1}
\\[0.5cm]
\textbf{Resolució:}
\\[0.5cm]
\text{1. Els mols de solut de la solució diluïda són:}
\\
n=1M \cdot 0,1L= 0,1 \; mols \; H_2 S O_4
\\
\text{que són:}
\\
0,1 \;mols \; H_2 S O_4 \cdot { \frac{98g }{ 1 \; mol \; H_2 S O_4 } }=9,8 \; g H_2 S O_4
\\
\text{El volum de solució concentrada de sulfúric que ens cal és:}
\\
9,8 \; g \; H_2 S O_4 \cdot {\frac{ 100g \; H_2 S O_4 \; 98\%}{98g \;H_2 S O_4}} \cdot { \frac{1cm³}{1,84g \;H_2 S O_4 98\% } }=\mathbf {5,43 cm³ \; H_2 S O_4 \;98\%}.
\\
\text{2. La massa de solut de 100ml de solució diluïda és:}
\\
g (H_2 S O_4 \; 20\%)=100ml \; (H_2 S O_4 20\%) \cdot { \frac{1,14g \; (H_2 S O_4 \; 20\%)}{1ml}} \cdot { \frac{20g \; H_2 S O_4}{100g \; H_2 S O_4 \;20\%} }=22,8 \;g \; H_2 S O_4.
\\
\text{El volum de solució concentrada de sulfúric que ens cal és:}
\\
22,8g \; H_2 S O_4 \cdot {\frac{ 100g \; H_2 S O_4 \; 98\%}{98g \; H_2 S O_4}} \cdot { \frac{1cm³}{1,84 \; g \; H_2 S O_4 \; 98\% } }=12,64 cm³ \; H_2 S O_4 \; 98\%
\]

4. Propietats col·ligatives de les dissolucions

Les propietats col·ligatives són les que depenen del nombre de molècules presents, però no de llur natura. La pressió d’un gas és una propietat col·ligativa.

4.1 Llei de Raoult

La llei de Raoult diu que la disminució de la pressió de vapor d’un dissolvent en una dissolució que té un solut no volàtil és proporcional a la fracció molar del solut:

\[
\Delta p_{dissolvent}=p_o-p=x_{solut} \cdot p_0=\frac{ n_{solut} }{ n_{solut}+n_{dissolvent} } \enspace \Delta p_{dissolvent} \, (p > p_0)
\\
p_ 0: \text{pressió del dissolvent pur}\\
p: \text{pressió de la dissolució}\\
x_{solut}: \text{ fracció molar de solut}
\]

Com més concentrada sigui la dissolució, més minvarà la pressió de vapor del dissolvent.

La llei de Raoult es fa servir per a calcular masses moleculars.

La disminució de la pressió de vapor augmenta amb la temperatura.

Exemple:

Quan barregem 27,77g d’una substància pura en 200cm³ d’aigua la pressió de vapor de l’aigua (pura) varia de 23,76mm de Hg a 22,81 mm de Hg (dissolució). Quina és la massa molecular del solut?

\[
1. \text{La massa molecular del solut és: }M_{solut}= \frac{ massa_{solut}} { mols_{solut }}=\frac{ 27,77g }{ mols_{solut}}
\\
2.\text{Calculem els mols de solut usant la fracció molar del dissolvent (aigua):}
\\
x_{H_2 O}=\frac{n_{H_2 O}}{n_{H_2 O}+n_s}
\rightarrow
n_{ solut }=\frac{n_{H_2 O}(1-x_{H_2O})}
{x_{H_2O}}
\\
2a.n_{H_2 O}=200g \cdot {\frac {1mol}{18g} }=11,\hat1 \; mols
\\
2b. x_{H_2 O}=1-x_{solut}=1-\frac{\Delta p}{p_0}=1-\frac{23,76-22,81}{23,76}=0,96
\\
2c. n_{solut}=\frac{ 11,\hat 1(1-096)}{ 0,96 }=0,46
\\
3. \text{Per tant, la massa molecular del solut és:}
\\
M_{solut}=\frac{27,77g}{0,46}=\mathbf{60,37 \; g \cdot mol^{ -1 }}
\]

4.2 Augment ebullioscòpic

L’augment ebullioscòpic és l’augment del punt d’ebullició d’un dissolvent en una dissolució amb un solut no volàtil.

El solut fa que la pressió de vapor del dissolvent sigui més petita que la del dissolvent pur a la mateixa temperatura i, per tant, el punt d’ebullició augmenta. Aquest augment depèn de la concentració molal i de la constant ebullioscòpica del dissolvent.

Aquesta llei també la usem per a calcular la massa molar del solut: \[\Delta t_e=k_e \cdot m\]

Exemple:

El punt d’ebullició d’una dissolució de 0,41g de naftalè en dissolució amb 27,4g de cloroform és de 61,75ºC i la del cloroform pur de 61,3ºC. Calculeu la massa molecular del naftalè. (ke=3,86).

\[
1. \text {La massa molecular del naftalè és:}
\\
M=\frac{ \text{massa naftalè}}{ \text{mols naftalè} }=\frac{ 0,41g } {n_{naftalè} }
\\
2. \text{Calculem els mols de naftalè a partir de la molalitat de la dissolució:}
\\
m=\frac{ \text{mols naftalè} }{ \text{Kg de dissolvent} }=\frac{ \Delta t_e }{ k_e } \rightarrow n_{ naftalè}=\frac{ \Delta t_e }{ ~k_e } \cdot \text{Kg de dissolvent}
\\
n_{naftalè }=\frac{ 61,75-61,3 }{3,86 } \cdot 27,4.10^{ -3}=0,0032
\\
3. \text{I finalment, la massa molecular del naftalè:}
\\
M=\frac{ 0,41g }{ 0,0032 }=\mathbf {128,13 g \cdot mol^{ -1 }}
\]

4.3 Descens crioscòpic

És el descens del punt de congelació d’una dissolució quan n’augmentem la concentració: \[\Delta t_c=k_c m\].

En baixar la pressió del vapor del dissolvent, baixa també el punt de congelació.

Exemple:

Calculeu la massa molecular d’un solut que, quan se’n dissolen 24g en 75cm³ d’aigua destil·lada, la dissolució es congela a -1,80ºC (kc=1,86).

\[
1. M=\frac{ \text{massa}}{ \text{mols}}=\frac{ 24g }{ n_{solut} }
\\
2. \text{Calculem els mols de solut a partir de la molalitat de la dissolució:}
\\
m={ \frac{\text{mols}}{\text{Kg de dissolvent}}=\frac{\Delta t_c }{ k_c } \rightarrow n_{ solut }=\frac{ \Delta t_c }{ k_c }} \cdot \text{Kg de dissolvent}
\\
n_{ solut }=\frac{ 1,80 }{ 1,86 } \cdot 75.10^{ -3} =0,073
\\
3. \text{I finalment, la massa molecular del solut és:}
\\
M=\frac{ 24g }{ 0,073 }=\mathbf {328,77 g \cdot mol^{ -1 }}
\]

4.3 Pressió osmòtica

La pressió osmòtica és la pressió que fa la columna d’una dissolució líquida sobre una membrana semipermeable. Quan la concentració diluïda flueix en direcció a la concentrada a través de la membrana (procés d’osmosi) la columna de líquid puja fins que s’arriba a l’equilibri de concentracions a cada banda de la membrana.

La pressió \[\pi \] que fa la columna de líquid sobre la membrana és equivalent a la que farien els mateixos mols d’un gas a les mateixes condicions de pressió i temperatura. Per tant, podem escriure:

\[
\pi \cdot V=\frac{m}{M} \cdot R \cdot T \rightarrow \pi \cdot M=\frac{m}{V} \cdot R \cdot T \rightarrow M=\frac{ \rho \cdot R \cdot T }{\pi}
\]

Per tant, si sabem la densitat de la solució, en podem calcular el pes molecular:

Exemple:

Una dissolució a 25ºC de 20g/L d’albúmina fa una pressió osmòtica de 7,9mm Hg. Calculeu-ne la massa molecular.

\[
1. \text{Fem les transformacions a SI:}
\\
25ºC=25+273=298 K
\\
7,9mm Hg \cdot {\frac{1atm}{ 760mmHg }}=0,0104atm
\\
20g/L=20.10^{ -3 }Kg/L
\\[0.5cm]
2. \text{Calculem la massa molecular:}
\\
M=\frac{ \rho \cdot R \cdot T }{ \pi }= \frac{ 20.10^{-3} \cdot 0,082 \cdot 298 }{ 0,0104 }=\mathbf {46,99 g \cdot mol^{ -1 }}
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Còniques

1. Definició

Les còniques són les corbes del pla que s’obtenen quan es talla una superfície cònica amb un pla.

L’equació general d’una cònica amb els eixos paral·lels als eixos de coordenades és:

\[Ax²+By²+Cx+Dy+E=0\]

Si \[A=B\], és una circumferència (\[x²+y²+Ax+By+C=0\]).

Si \[A \neq B\] i són del mateix signe, és una el·lipse (\[Ax²+By²+Cx+Dy+E=0\]).

Si \[A \neq B\] i són de signe diferent, és una hipèrbola

\[
Ax²-By²+Cx+Dy+E=0\\
-Ax²+By+Cx+Dy+E=0
\]

Si \[A\] o \[B\] són zero, és una paràbola

\[
Ax²+Bx+Cy+D=0\\
Ay²+Bx+Cy+D=0
\]

Si \[A\] i \[B\] són zero, és una recta (\[Cx+Dy+E=0\]).

Per a calcular la intersecció d’una cònica amb els eixos o amb altres funcions es farà el sistema d’equacions que en resulta.

2. Circumferència

Una circumferència és el conjunt de tots els punts d’un pla la distància dels quals al centre és constant.

\[(x-a)²+(y-b)²=r²\]

Es genera quan una superfície cònica és tallada per un pla horitzontal paral·lel a la base de la superfície cònica.

2.1 Elements de la circumferència:

Els elements d’una circumferència són el centre i el radi.

Podem dibuixar una circumferència amb un centre i un radi o bé amb tres punts.

2.2 Equació general:

\[x²+y²+Ax+By+C=0\]

Per a calcular \[A,B,C\] a partir de l ‘equació reduïda:

\[(x-a)²+(y-b)²=r²\\
(x²-2xa+a²)+(y²-2yb+b²)=r²\\
x^2+y²-2xa-2yb+a²+b²=r^2\\
x²+y²+Ax+By+C=0\\
A=-2a, \; B=-2b, \; C=a²+b²-r²
\]

Per tal que la circumferència existeixi a \[\mathbb{R}\] s’ha de complir que \[(\frac{A}{2})²+(\frac{B²}{2})²-C>0\].

Exemple:

\[
(x-3)²+(y-2)²=9\\
a=3, \; A=-6\\
b=2, \; B=-4\\
C=(-3)²+(2)²-(3)²=4\\
x²+y²-6x-4y+4=0
\]

2.3 Equació reduïda:

\[
C(0,0): x²+y²=r²\\
[C(a,b): (x-a)²+(y-b)²=r²
\]

Per a calcular l’equació reduïda a partir de la general, fem:

  1. Si els coeficients iguals de la \[x\] i la \[y\] són diferents d’\[1\], els reduïm a \[1\] dividint tota l’equació pel valor dels coeficients.
  2. Calculem \[A,B\] i \[r\] .
  3. Escrivim l’equació reduïda i dibuixem la circumferència.
\[
4x²+4y²-24x-16y+16=0\\[1cm]
1.\\
x²+y²-6x-4y+4=0\\[0.5cm]
2.\\
a=-\frac{A}{2}=-\frac{-6}{2}=3\\
b=-\frac{B}{2}=-\frac{-4}{2}=2\\
C=a²+b²-r²\\
4=3²+2²-r²=9\\
-r²=4-9+4\\
r=3\\[0.5cm]
3.\\
(x-3)²+(y-2)²=9
\]

2.4 Potència d’una circumferència

La potència d’un punt P respecte a una circumferència és: \[\overline{PA} \cdot \overline{PB}=d²-r²\]. El punt pot ser exterior, interior o de la circumferència.

Si ens donen un punt i l’equació d’una circumferència, per a calcular al distància d haurem de trobar l’equació de la recta i els punts d’intersecció amb la circumferència fent un sistema d’equacions no lineals. També haurem de recordar els coneixements de vectors en el pla per a calcular les distàncies.

El procediment que hem de seguir és:

  1. Trobem el centre i el radi de la circumferència i determinem si el punt és exterior, interior o de la circumferència.
  2. Calculem l’equació de la recta que passa pel punt P i el punt del centre de la circumferència.
  3. Trobem els punts d’intersecció de la circumferència i la recta.
  4. Calculem la distància d i la potència de P a la circumferència.
\[
1.\\
x²+y²+6x-6y+9=0\\
a=-\frac{A}{2}=-\frac{6}{2}=-3\\
b=-\frac{-6}{2}=-\frac{6}{2}=+3\\
r²=a²+b²-C=(-3)²+(+3)²-9=9, \;r=3\\
C(a,b)=(-3,+3)\\
r=3\\
(x+3)²+(y-3)²=9\\
(+3)²+(+1)²+6 \cdot 3-6 \cdot 1+9=31 \; \text{[31>9, (3,1)és un punt exterior]}
\\[1cm]
2.\\
\vec v_r=(3,1)-(-3,3)=(6,-2)\\
\vec v_{r\perp}=(2,6)\\
r:2x+6y+C=0, P(3,1) \Rightarrow D=-12\\
r:2x+6y-12=0
\\[1cm]
3.\\
\begin{cases}
2x+6y-12=0\\
(x+3)²+(y-3)²=9
\end{cases}\\
(A):x_1= -3+\frac{9}{\sqrt{10}} , \; y_1= +3-\frac{3}{\sqrt{10}} \\
(B):x_2= -3-\frac{9}{\sqrt{10}} , \; y_2= +3+\frac{3}{\sqrt{10}}
\\[1cm]
4.\\
\left| \overline{PA} \right|=\left| (-3+\frac{9}{\sqrt{10}},+3-\frac{3}{\sqrt{10}})-(3,1) \right|=\left| (-6+\frac{9}{\sqrt{10}},+2-\frac{3}{\sqrt{10}}) \right|=3.32 \; u.\\
Potència=d²-r²=(3.32)²-(3)²=2.05 \; u².
\]

2.5 Eix radical

L’eix radical de dues circumferències és el lloc geomètric dels punts que tenen la mateixa potència respecte a cada circumferència. És una recta perpendicular a la recta que uneix el centres de cada circumferència.

L’equació de l’eix radical és:

\[
x² + y^2 +Ax +By +C=0
\\
x² + y^2 +A’x +B’y +C’=0
\\[0.5cm]
x² + y^2 +Ax +By +C=x² + y^2 +A’x +B’y +C’=0
\\
(A-A’)x + (B-B’)y+(C-C’)=0
\]

3. El·lipse

És el lloc geomètric del punts del pla que la suma de les distàncies a dos punts fixos (focus) és constant.

Si \[\overline{PF},\overline{PF’}\] són el radis vectors:

\[
\overline{PF}+\overline{PF’}=2a
\]

Una el·lipse es genera quan una superfície cònica és tallada per un pla que no és paral·lel a la generatriu de la superfície cònica.

3.1 Elements de l’el·lipse

Per a calcular els radis vectors fem:

\[\overline{PF}=a-ex, \; \overline{PF’}=a+ex\]

Per a calcular l’eix secundari fem:

\[b=\sqrt{a²-c²}\]

Per a calcular els vèrtexs d’una el·lipse centrada al \[(0,0)\] fem la intersecció de l’equació de l’el·lipse amb els eixos \[(x=0,\; y=0)\].

3.2 Equació general

\[Ax²+By²+Cx+Dy+E=0\]

3.3 Equació reduïda

Per a obtenir l’equació reduïda a partir de la general i extreure’n els elements de l’el·lipse, fem:

  1. Agrupem el termes amb \[x\] i el termes amb \[y\].
  2. Fem el factor comú de cada agrupació.
  3. Obtenim els quadrats perfectes de cada agrupació.
  4. Calculem l’equació reduïda i la simplifiquem.
  5. N’extraiem els elements.
\[
4x²+9y²-8x+18y-23=0
\\[1cm]
1.\\
(4x²-8x)+(9y²+18y)-23=0
\\[1cm]
2.\\
4(x²-2x)+9(y²+2y)-23=0
\\[1cm]
3\\
x²-2x=(x-1)²-1\\
y²+2y=(y+1)²-1
\\[1cm]
4.\\
4[(x-1)²-1]+9[(y+1)²-1]-23=0\\
4[(x-1)²]+9[(y+1)²]-23-4-9=0\\
4[(x-1)²]+9[(y+1)²]=36\\
\frac{4[(x-1)²]}{36}+\frac{9[(y+1)²]}{36}=\frac{36}{36}\\
\frac{(x-1)²}{9}+\frac{(y+1)²}{4}=1
\\[1cm]
5.\\
C(1,-1)
\\[0.5cm]
c²=a^2-b²=3²-2²=5\\
c=\sqrt{5}\\
F'(1+\sqrt{5},-1), \; F(1-\sqrt{5},-1)
\\[0.5cm]
V_x(1 \pm 3,-1) \Rightarrow (4,-1), \; (-2,-1)\\
V_y(1,-1 \pm 2) \Rightarrow (1,1), \; (1,-3)\\
\]

Segons la posició i el centre de l’el·lipse, els focus, els vèrtexs i l’equació reduïda seran:

3.3.1 Horitzontal


3.3.1.1 C(0,0)

\[
F(-c,0),\; F'(+c,0)\\
V_x(\pm a,0), \; V_y(0,\pm b)\\
\frac{x²}{a²}+\frac{y²}{b²}=1\]

3.3.1.2 C(x0, y0)

\[
F(x_0-c,y_0),\; F'(x_0+c,y_0)\\
V_x(x_o \pm a,0), \; V_y(x_0,y_o\pm b)\\
\frac{(x-x_0)²}{a²}+\frac{(y-y_0)²}{b²}=1
\]

3.3.2 Vertical


3.3.2.1 C(0,0)

\[
F(0,-c),F'(0,+c)\\
V_x(\pm b,0), \; V_y(x_0,\pm a)\\
\frac{x²}{b²}+\frac{y²}{a²}=1
\]

3.3.2.2 C(x0, y0)

\[
F'(x_0,y_0-c),F(x_0,y_0+c)\\
V_x(x_0\pm b,y_0), \; V_y(x_0,y_0 \pm a)\\
\frac{ (x-x_0)²}{b²}+\frac{(y-y_0)²}{a²}=1
\]

4. Hipèrbola

És el lloc geomètric dels punts del pla que fan que la diferència de les distàncies a dos punts fixos (focus) sigui constant \[2a\].

\[\overline{PF}-\overline{PF’}=2a\]

S’obté una hipèrbola quan un pla talla verticalment dues superfícies còniques oposades pel vèrtex:

4.1 Elements d’una hipèrbola

A l’eix principal l’anomenem eix real i a l’eix secundari eix imaginari.

Per a calcular els radis vectors d’una hipèrbola, fem:

\[\overline{PF}=\left|ex-a\right|, \; \overline{PF’}=\left|ex-a\right|\]

Els vèrtexs d’una hipèrbola amb \[C(0,0)\] es calculen fent la intersecció del eixos amb la hipèrbola \[x=0, \; y=0\].

Les asímptotes es calculen fent:

\[y=\pm \frac{b}{a}x\]


4.2 Equació general

\[
Ax²-By²+Cx+Dy+E=0\\
-Ax²+By²+Cx+Dy+E=0
\]


4.3 Equació reduïda

Per a calcular l’equació reduïda d’una hipèrbola a partir de la general, fem:

  1. Agrupem el termes amb \[x\] i el termes amb \[y\].
  2. Fem el factor comú de cada agrupació.
  3. Obtenim els quadrats perfectes de cada agrupació.
  4. Calculem l’equació reduïda i la simplifiquem.
  5. N’extraiem els elements.
\[
4x²-9y²-8x+36y+4=0\\[1cm]
1.\\
(4x²-8x)-(9y²-36y)+4=0\\
2.\\
4(x²-2x)-9(y²-4y)+4=0\\
3.\\
x²-2x=(x-1)²-1\\
y²-4y=(y-2)²-4\\
4.\\
4(x-1)²-9(y-2)²=-36\\
\frac{4(x-1)²}{-36}-\frac{9(y-2)²}{-36}=1\\
\frac{(x-1)²}{-9}-\frac{(y-2)²}{-4}=1\\
\frac{(y-2)²}{4}-\frac{(x-1)²}{9}=1\\[1cm]
5.\\
C(1,2)\\
a=2, \;b=3, \; c=\sqrt{a²+b²}=\sqrt{13}\\
V(1,2\pm 2)=(1,0), \;(1,4)\\
F(1,2+\sqrt{13}), \; F'(1,2-\sqrt{13})\\
(y-2)²=\frac{4}{9}(x-1)² \Rightarrow y=\pm \frac{2}{3}(x-1)+2\\
y=\frac{2}{3}x+\frac{4}{3}\\
y=-\frac{2}{3}x+\frac{8}{3}
\]

Segons la posició i el centre de la hipèrbola, els focus, els vèrtexs i l’equació reduïda seran:


4.3.1 Horitzontal

4.3.1.1 C(0,0)

\[
C(0,0)\\
F(x_0-c,y_0),F'(x_0+c,y_0)\\
V_x(x_0\pm a,y_0)\\
\frac{(x-x_0)²}{a²}+\frac{(y-y_0)²}{b²}=1
\]

4.3.1.2 C(x0,y0)

\[
C(x_0,y_0)\\
F(x_0-c,y_0),F'(x_0+c,y_0)\\
Vx(x_0 \pm a, y_0)\\
\frac{(x-x_0)²}{a²}+\frac{(y-y_0)²}{b²}=1
\]

4.3.2 Vertical

4.3.2.1 C(0,0)

\[
C(0,0)\\
F(0,-c),F'(0,+c)\\
V_y(0,\pm a)\\
\frac{(x-x_0)²}{b²}+\frac{(y-y_0)²}{a²}=1
\]

4.3.2.2 C(x0,y0)

\[
C(x_0,y_0)\\
F(x_0,y_0-c),F'(x_0,y_0+c)\\
V_y(x_0,y_0 \pm a)\\
\frac{(x-x_0)²}{b²}+\frac{(y-y_0)²}{a²}=1
\]

5. Paràbola

Una paràbola és el lloc geomètric dels punts del pla que equidisten del focus i de la directriu:

\[y²=2px\] \[
d(F,P)=\sqrt{(x-\frac{p}{2})²+y²}\\
d(P,d)=\left|x+\frac{p}{2}\right|\\
\sqrt{(x-\frac{p}{2})²+y²}=\left|x+\frac{p}{2}\right|\\
y²=2px
\]

Una paràbola s’obté tallant de forma obliqua una superfície cònica.

5.1 Elements de la paràbola

La distància del focus a la directriu s’anomena paràmetre.

L’eix és la recta que passa pel focus i és perpendicular a la directriu.

El vèrtex és el punt d’intersecció de la paràbola amb l’eix.

5.2 Equació general

\[
Ax²+Bx+Cy+D=0\\
Ay²+Bx+Cy+D=0
\]
  1. Separarem els termes amb \[x\] dels termes amb \[y\] i dividirem tota l’equació pel coeficient del terme quadrat.
  2. Farem el quadrat perfecte del terme quadrat i susbstituirem l’expressió calculada a l’equació anterior.
  3. Calcularem l’equació de la paràbola transformant l’expressió del punt anterior en una la forma \[(y-y_0)²=\pm 2p(x-x_0)\], o bé de la forma \[(x-x_0)²=\pm 2p(y-y_0)\] extraent el factor comú del coeficient \[ x\] o \[y\] de primer grau de la dreta de la igualtat.

    Si l’equació té un terme \[y²\], la transformarem en una de la primera forma. Si té un terme \[x²\], la transformarem en una equació de la segona forma.
  4. Definirem els elements de la paràbola i en calcularem un parell de punts per a poder dibuixar-la.

\[
2x²+8x+3y-5=0
\\[1cm]
1.\\
2x²+8x=-3y+5\\
x²+4x=-\frac{3}{2}+\frac{5}{2}
\\[1cm]
2. \\
x²+4x=(x+2)²-4
\\[1cm]
3.\\
(x+2)²-4=-\frac{3}{2}y+\frac{5}{2}\\
(x+2)²=-\frac{3}{2}y+\frac{13}{2}\\
(x+2)²=-\frac{3}{2}(y-\frac{13}{3}) \enspace [(x-x_o)²=\pm 2p(y-y_0)]
\\[1cm]
4.\\
x_0=-2, \; y_0=\frac{13}{3}\\
-2p=-\frac{3}{2} \Rightarrow p=\frac{3}{4}\\
V(-2,\frac{13}{3})\\
F(-2,\frac{13}{3}-\frac{3}{8})=(-2,\frac{95}{24})\\
y=\frac{13}{3}+\frac{3}{8}=\frac{113}{24} \text{ (directriu)}\\
(x+2)=\pm \sqrt{\frac{39}{6}} \; \text{( y=0)}\\
x=0.55, \; -4.56
\]

5.3 Equació reduïda

Segons si la paràbola té el vèrtex a \[V(0,0)\] i si la posició és vertical o horitzontal, la posició del focus, del vèrtex i l’equació reduïda serà:

5.3.1 Horitzontal V(0,0)

5.3.1.1 Focus a la dreta:

\[
F(\frac{p}{2},0)\\
y²=+2px
\]

5.3.1.2 Focus a l’esquerra

\[
F(-\frac{p}{2},0)\\
y²=-2px
\]

5.3.2 Vertical V(0,0)

5.3.2.1 Focus per sobre de l’eix

\[
F(0,\frac{p}{2})\\
x²=+2px
\]

5.3.2.2 Focus per sota de l’eix

\[
F(0,-\frac{p}{2})\\
x²=-2px
\]

5.3.3 Horitzontal (x0,y0)

5.3.3.1 Focus a la dreta

\[
F(x_0+\frac{p}{2},0)\\
(y-y_0)²=+2p(x-x_0)
\]

5.3.3.2 Focus a l’esquerra

\[
F(x_0-\frac{p}{2},0)\\
(y-y_0)²=-2p(x-x_0)
\]


5.3.4 Vertical (x0,y0)

5.3.4.1 Focus per sobre de l’eix:

\[
F(x_0,y_0+\frac{p}{2})\\
(x-x_0)²=+2p(y-y_0)
\]


5.3.4.2 Focus per sota de l’eix:

\[
F(x_0,y_0-\frac{p}{2})\\
(x-x_0)²=-2p(y-y_0)
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Geometria a l’espai

1. Definició

La geometria (del grec, “mesura de la Terra) és la parts de les matemàtiques que estudia les relacions entre els elements que la formen (punt, recta, pla, angles i figures) i la manera de calcular-les.

Els elements de la geometria analítica a l’espai són el punt, la recta i el pla i els angles.

2. Vectors a l’espai

Vegeu Vectors en el pla per a saber-ne més.

2.1 Producte vectorial

El producte vectorial de dos vectors és un altre vector perpendicular al pla que formen aquests dos vectors. El sentit del vector del producte vectorial es pot determinar amb la regla de la mà dreta.

El mòdul del vector resultant del producte vectorial de dos vectors representa l’àrea tancada per aquests vectors.

El producte vectorial no és commutatiu.

Per a calcular el producte vectorial de dos vectors farem el següent determinant:

\[
\vec u_1=x_1 \cdot \vec i + y_1 \cdot \vec j + z_1 \cdot \vec k\\
\vec u_2=x_2 \cdot \vec i + y_2 \cdot \vec j + z_2 \cdot \vec k\\
\vec u_1 \times \vec u_2=\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}=\\
\vec i(y_1z_2-y_2z_1) – \vec j(x_1z_2-x_2z_1) + \vec k(x_1y_2-x_2y_1)
\]

Exemple:

\[
\vec {u_1}=(-5,3,1)\\
\vec {u_2}=(1,2,-4)\\
\vec {u_1} \times \vec {u_2}=\begin{vmatrix} i & j & k \\ -5 & 3 & 1 \\ 1 & 2 & -4 \end{vmatrix}=\\
\vec i(3 \cdot-4-2 \cdot 1) -\vec j(-5 \cdot -4-1 \cdot 1) + \vec k(-5 \cdot 2-1 \cdot 3)\\
\vec {u_3}=\vec i(-14) – \vec j(19) + \vec k(-13)\\
A=|\vec {u_3}|=\sqrt{(-14)² +(-19)² + (-13)²}=26.94 \; u²\\
\]

2.2 Producte mixt

El producte mixt de tres vectors \[[u,v,w]\] s’obté multiplicant escalarment el primer vector pel producte vectorial del segon i el tercer. També es pot calcular fent el determinat dels tres vectors. Representa el volum tancat per aquests tres vectors.

\[
\vec u_1=x_1 \cdot \vec i + y_1 \cdot \vec j + z_1 \cdot \vec k\\
\vec u_2=x_2 \cdot \vec i + y_2 \cdot \vec j + z_2 \cdot \vec k\\
\vec u_3=x_3 \cdot \vec i + y_3 \cdot \vec j + z_3 \cdot \vec k\\
\vec u_1 \cdot (\vec u_2 \times \vec u_3)=\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}
\]

Exemple:

\[
\vec u_1=2 \cdot \vec i + 3 \cdot \vec j + 1 \cdot \vec k\\
\vec u_2=-5 \cdot \vec i + 3 \cdot \vec j + 1 \cdot \vec k\\
\vec u_3=1 \cdot \vec i + 2 \cdot \vec j + 4 \cdot \vec k\\
V=\begin{vmatrix} 2 & 3 & 1 \\ -5 & 3 & 1 \\ 1 & 2 & 4 \end{vmatrix}=70 \; u³
\]

3. Equació de la recta

\[
(x,y,z)=(x_0,y_0,z_0)+t(u_1,u_2,u_3)\\
x=x_0+ t \cdot u_1\\
y=y_0+ t \cdot u_2\\
z=z_0+ t \cdot u_3\\
t=\frac{x-x_0}{u_1}=\frac{y-y_0}{u_2}=\frac{z-z_0}{u_3}\\[0.5cm]
u_2(x-x_0)=u_1(y-y_0)\\
u_3(y-y_0)=u_2(z-z_0)\\[0.5cm]
u_2x-u_2x_0-u_1y+u_1y_0=0\\
u_3y-u_3y_0-u_2z+u_2z_0=0\\[0.5cm]
u_2x-u_1y+(-u_2x_0+u_1y_0)=0\\
u_3y-u_2z+(-u_3y_0+u_2z_0)=0\\[0.5cm]
\begin{cases}
\pi_1: A_1x+B_1y+C_1z+D_1=0\\
\pi_2:A_2x+B_2y+C_2z+D_2=0
\end{cases}
\]

(Vegeu Equacions de la recta de Geometria en el pla per a saber-ne més).

4. Equació del pla

Per a definir tots els punts d’un pla ens calen tres punts o dos vectors i un punt.

Si \[O\] és l’origen de coordenades del sistema de referència, \[\vec u_1, \vec u_2\] són els dos vectors del pla de referència, \[P\] és un punt del pla de referència i \[X\] és el punt que volem definir, l’equació vectorial del pla amb dos vectors i un punt és: \[\vec {OX}=\vec{OP}+\vec{PX}\].

\[
(x,y,z)=(x_0,y_0,z_0)+t(u_1,u_2,u_3)+s(v_1,v_2,v_3)\\
x-x_0=t \cdot u_1+ s \cdot v_1\\
y-y_0=t \cdot u_2+ s \cdot v_2\\
z-z_0=t \cdot u_3+ s \cdot v_3\\[1cm]
\pi: \begin{vmatrix} x-x_0 & y-y_0 & z-z_0 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}=0\\[1cm]
(x-x_0) \cdot \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}

(y-y_0) \cdot \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}
+
(z-z_0) \cdot \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}\\
(x-x_0)(u_2v_3-v_2u_3)-(y-y_0)(u_1v_3-v_1u_3)+(z-z_0)(u_1v_2-v_1u_2)\\
x(u_2v_3-v_2u_3)-y(u_1v_3-v_1u_3)+z(u_1v_2-v_1u_2)+\\
-x_0(u_2v_3-v_2u_3)+y_0(u_1v_3-v_1u_3)-z_0(u_1v_2-v_1u_2)=0\\[1cm]
\pi:Ax+By+Cz+D=0
\]

El vector \[(A,B,C)\] de l’equació general és el vector normal de pla (vector lliure perpendicular a una recta, pla, o a un corba qualsevol):

\[\vec n(A,B,C)\]

Exemple:

\[
(x,y,z)=(2,3,1)+t(-5,3,1)+s(1,2,4)\\
x-2=-5t+1s\\
y-3=3t+2s\\
z-1=1t+4s\\[0.5cm]
(x-2) \cdot \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix}
(y-3) \cdot \begin{vmatrix} -5 & 1 \\ 1 & 4 \end{vmatrix}
+
(z-1) \cdot \begin{vmatrix} -5 & 3 \\ 1 & 2 \end{vmatrix}=0\\
(x-2) \cdot 10-(y-3) \cdot -21+(z-1) \cdot -13=0\\[0.5cm]
\pi:10x+21y-13z+36=0
\]

Si tenim tres punts, \[A,B,C\], calcularem dos vectors (\[\vec{AB}, \vec{AC}\], per exemple) i l’equació general del pla serà :

\[
\begin{vmatrix} x-x_0 & y-y_0 & z-z_0 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}=0
\]

4.1 Feix de plans

Definim un feix de plans a partir de dos plans que formen la recta d’intersecció comuna de tot els plans del feix (aresta del feix):

\[
r:
\begin{cases}
A_1x+B_1y+C_1z+D_1=0 \\
A_2x+B_2y+C_2z+D_2=0 \\
\end{cases}
\\[1cm]
\alpha(A_1x+B_1y+C_1z+D_1)+\beta(A_2x+B_2y+C_2z+D_2)=0
\]

És a dir que, l’equació del feix de plans és la combinació lineal dels dos plans que determinen la recta \[r\].

Si \[\alpha\] és zero, tenim l’equació del segon pla, i si \[\beta\] és zero tenim la del primer pla.

També es pot definir l’equació del feix com:

\[
\frac{\alpha} {\alpha}(A_1x+B_1y+C_1z+D_1)+\frac {\beta} {\alpha} (A_2x+B_2y+C_2z+D_2)=0\\
(A_1x+B_1y+C_1z+D_1)+\gamma (A_2x+B_2y+C_2z+D_2)=0
\]

Exemple:

\[
r:
\begin{cases}
-5x+3y+1z+3=0 \\
1x+2y+4z-2=0 \\
\end{cases}
\\[1cm]
\alpha(-5x+3y+1z+3)+\beta(1x+2y+4z-2)=0
\]

5. Posicions relatives

Podem estudiar la posició relativa de rectes i plans comparant-ne, o bé els punts i vectors, o bé comparant els rangs de les matrius formades amb les equacions generals de les rectes.

Si tenim l’equació general d’una recta però ens cal un vector i un punt, haurem de calcular-ne les equacions vectorial, paramètrica o continua.

Per a calcular l’equació paramètrica d’una recta si en tenim la general, farem:

  1. Assignarem a alguna de les variables, per exemple la zeta, el paràmetre \[\lambda\]. Aquesta variable (o el paràmetre \[\lambda\]) serà la variable independent del sistema d’equacions indeterminat.
  2. Resoldrem el sistema d’equacions indeterminat per reducció eliminant la \[x\] per a obtenir la \[y\] en funció de \[z\].
  3. Resoldrem el sistema d’equacions indeterminat eliminant la \[y\] per a obtenir \[x\] en funció de \[z\].
    També podem resoldre els passos 2 i 3 resolent el sistema d’equacions per Gauss o Crammer.
  4. Agruparem les equacions resultants i obtenim l’equació paramètrica de la recta. Fent les operacions habituals de l’apartat 3 podem obtenir qualsevol altre equació de la recta.
\[
\begin{cases}
\pi_1:4x-8y+5z=7\\
\pi_2:x-9y+z=6
\end{cases}\\
1. z=\lambda\\
2. y=-\frac{17}{28}-\frac{1}{28}\lambda\\
3. x=\frac{15}{28}-\frac{37}{28}\lambda\\
4. \begin{cases}
x=\frac{15}{28}-\frac{37}{28}\lambda\\
y=\frac{17}{28}-\frac{1}{28}\lambda\\
z=\lambda
\end{cases}
\]

Per a calcular l’equació general d’una recta si en tenim la paramètrica o continua farem com en l’exemple anterior els passos habituals per obtenir les diferents equacions d’una recta:

\[
\begin{cases}
x=2-3\lambda\\
y=5+5\lambda\\
z=-1-4\lambda
\end{cases}\\
\lambda=\frac{x-2}{-3}=\frac{y-5}{5}=\frac{z+1}{-4}\\
5(x-2)=-3(y-5)\\
5x+3y-25=0\\
-4(y-5)=5(z+1)\\
-4y-5z+15=0\\
r:
\begin{cases}
5x+3y-25=0\\
-4y-5z+15=0
\end{cases}
\]

Per a calcular sols el vector d’una recta si en tenim l’equació general farem el producte vectorial del vectors normals de les equacions generals dels plans:

\[
\begin{cases}
\pi_1:4x-8y+5z=7\\
\pi_2:x-9y+z=6
\end{cases}\\
\vec {n_1}=(4,-8,5), \; \vec {n_2}=(1,-9,1)\\
\vec v_r=\vec {n_1} \times {\vec n_2}\\
\begin{vmatrix}i & j & k \\ 4 & -8 & 5 \\ 1 & -9 & 1 \end{vmatrix}\\
\vec i {(-8+45)}-\vec j {(4-5)}+\vec k {(-36+8)}\\
\vec {v_r}=37 \vec i+1 \vec j -28 \vec k
\]

5.1 Recta-recta

Si usem un vector \[\vec v\] i un punt de cada recta (\[P_r,P_s\]):

Posició relativaComparació punts i vectors
Coincidents\[\frac{\vec u_1}{\vec v_1}=\frac{\vec u_2}{\vec v_2}=\frac{\vec u_3}{\vec v_3} \; i \; P_r=P_s\]
Paral·leles\[\frac{\vec u_1}{\vec v_1}=\frac{\vec u_2}{\vec v_2}=\frac{\vec u_3}{\vec v_3} \; i \; P_r \neq P_s\]
Secants\[\frac{\vec u_1}{\vec v_1} \neq \frac{\vec u_2}{\vec v_2} \neq \frac{\vec u_3}{\vec v_3}\] i \[det(D)=0\]
S’encreuen\[\frac{\vec u_1}{\vec v_1} \neq \frac{\vec u_2}{\vec v_2} \neq \frac{\vec u_3}{\vec v_3}\] i \[det(D) \neq 0\]

Farem servir les equacions vectorial, paramètrica o continua per a determinar el vector i el punt de cada recta.

\[
r: (x,y,z)=(x_r,y_r,z_r)+ \lambda(v_{r1},v_{r2}, v_{r3})\\
s:(x,y,z)=(x_s,y_s,z_s)+ \lambda(v_{s1},v_{s2}, v_{s3})\\
r:\begin{cases}
x=x_r+ \lambda \cdot v_{r1}\\
y=y_r+ \lambda \cdot v_{r2}\\
z=z_r+ \lambda \cdot v_{r3}\\
\end{cases}\\[1cm]
s:\begin{cases}
x=x_s+ \mu \cdot v_{s1}\\
y=y_s+ \mu \cdot v_{s2}\\
z=z_s+ \mu \cdot v_{s3}\\
\end{cases}\\
\frac{x-x_0}{v_{r1}}=\frac{y-y_0}{v_{r2}}=\frac{z-z_0}{v_{r3}}\\
\frac{x-x_0}{v_{s1}}=\frac{y-y_0}{v_{s2}}=\frac{z-z_0}{v_{s3}}\\
\vec v_r:(v_{r1},v_{r2},v_{r3}), \; P_r(x_r,y_r,z_r)\\
\vec v_s:(v_{s1},v_{s2},v_{s3}), \; P_r(x_s,y_s,z_s)
\]

Si les rectes són coincidents, els vectors directors seran paral·lels i tindran els mateixos punts.

Si són paral·leles, els vectors directors seran paral·lels però tindran punts diferents.

Si les rectes són secants, els vectors directors no seran paral·lels i el determinant \[D\] dels dos vectors i el vector \[(x_2-x_1,y_2-y_1,z_2-z_1)\] serà zero.

\[
D=\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}=0
\]

Si les rectes s’encreuen, els vectors directors no seran paral·lels i el determinant \[D\] dels dos vectors i el vector \[(x_2-x_1,y_2-y_1,z_2-z_1)\] serà diferent de zero:

\[
D=\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \neq 0
\]

Exemple:

\[
r: (x,y,z)=(2,3,1))+t(-5,3,1)\\
s:
\begin{cases}
x=3+1s\\
y=4+2t\\
z=5+4s
\end{cases}\\
P_r=(2,3,1), \; v_r=(-5,3,1)\\
P_s=(3,4,5), \; v_s=(1,2,4)\\
\frac{-5}{1} \neq \frac{3}{2} \neq \frac{1}{4}\\
\begin{vmatrix}3-2 & 4-3 & 5-1 \\-5 & 3 & 1 \\1 & 2 & 4 \end{vmatrix}=-21\\[1cm]
\text{Per tant, les dues rectes s’encreuen.}
\]

Per a analitzar la posició relativa comparant els rangs de les matrius de coeficients i ampliada hem d’usar les equacions generals de les dues rectes:

Posició relativaRang matriu coeficients(*)Rang matriu ampliada(*)
Coincidents34
Paral·leles23
Secants33
S’encreuen34
\[
r:
\begin{cases}
3x+5y-21=0\\
y-3z=0
\end{cases}\\
s:
\begin{cases}
2x-y-2=0\\
4y-2z-6=0
\end{cases}\\[1cm]
\text{Matriu de coeficients (A)}=
\begin{vmatrix}
3 & 5 & 0 \\ 0 & 1 & -3 \\ 2 & -1 & 0 \\ 0 & 4 & -2
\end{vmatrix}\\
\text{Matriu ampliada (A*)}=
\begin{vmatrix}
3 & 5 & 0 & 21 \\ 0 & 1 & -3& 0\\ 2 & -1 & 0 & 2 \\ 0 & 4 & -2 & 6
\end{vmatrix}\\[1cm]
\text{Rang A}=3\\
\text{Rang A*}=4\\[1cm]
\text{Per tant, s’encreuen}
\]

5.2 Exercicis

5.2.1 Projecció d’una recta sobre un pla

Per a calcular la projecció d’una recta sobre un pla, fem:

  1. Calculem el vector normal del pla que conté la recta (\[\pi_2\]) fent el producte vectorial del vector de la recta i el vector normal del pla de projecció (tots dos són vectors del pla que conté la recta).
  2. Calculem el terme independent \[D\] de \[\pi_2\] usant el punt de la recta que també és un punt d’aquest pla.
  3. L’equació de la recta projectada és la formada per les equacions generals dels dos plans.
\[
r:
\begin{cases}
x=1+5\lambda\\
y=-2-2\lambda\\
z=\lambda
\end{cases}
\\[1cm]
\pi_1:30x+2y-z+9=0
\\[1cm]
1.
\\
\vec n_2=\vec v_r \times \vec n_1\\
\vec n_2=(5,-2,1) \times (30,2,-1)=(0,35,70)
\\[1cm]
2.
\\
\pi_2:0x+35y+70z+D=0\\
\pi_2:0 \cdot 1+35 \cdot -2+70 \cdot 0+D=0, \; D=70\\
\\
\pi_2:35y+70z+70=0
\\[1cm]
3.
\\t:
\begin{cases}
\pi_1:30x+2y-z+9=0\\
\pi_2:35y+70z+70=0
\end{cases}
\]

5.2.2 Recta perpendicular a dues rectes que s’encreuen

El procediment és:

  1. Expressem genèricament un punt de cada recta (\[P_r,P_s\]) i calculem el vector entre aquests dos punts (\[\vec {P_rP_s}\]).
  2. Aquest vector ha de ser perpendicular a les rectes que s’encreuen, per tant el producte escalar amb els vectors de les rectes ha de ser zero.
  3. Resolent el sistema d’equacions trobem el valor dels paràmetres de cada recta que fan que la recta \[t:\] sigui perpendicular i en calculem un vector perpendicular.
  4. Fem passar la recta perpendicular \[t:\] per un dels punts del vector \[P_r,P_s\] i tenim l’equació de la recta perpendicular a dues rectes que s’encreuen.
\[
r:
\begin{cases}
x=4+2\lambda\\
y=1-\lambda\\
z=-2+3\lambda
\end{cases}
\\[1cm]
s:
\begin{cases}
x=1+\mu\\
y=-2-2\mu\\
z=8+2\mu
\end{cases}
\\[1cm]
1.
\\
P_r:(4+2\lambda,1-\lambda,-2+3\lambda)\\
P_s:(1+\mu,-2-2\mu,8+2\mu)\\
\vec {P_rP_s}={[(4+2\lambda)-(1+\mu)],[(1-\lambda)-(-2-2\mu)],[(-2+3\lambda)-(8+2\mu)]}=\\
(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu)\\[1cm]
2.
\\
\vec {P_rP_s} \cdot \vec v_r=0\\
(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu) \cdot (2,-1,3)=0\\
-27+14\lambda-10\mu=0\\
\vec {P_rP_s} \cdot \vec v_s=0\\
(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu) \cdot (1,-2,2)=0\\
-23+10\lambda-9\mu=0
\\[1cm]
3.
\\
\begin{cases}
-27+14\lambda-10\mu=0\\
-23+10\lambda-9\mu=0
\end{cases}\\
\lambda=\frac{1}{2}, \; \mu=-2
\\
\vec {P_rP_s}=(3+2\lambda-\mu,3-\lambda+2\mu,-10+3\lambda-2\mu)=(2,-\frac{3}{2},-\frac{13}{2})\\
\\[1cm]
4.
\\
t:
\begin{cases}
x=4+2\cdot \psi\\
y=1-\frac{3}{2} \cdot \psi\\
z=-2 -\frac{13}{2} \cdot \psi
\end{cases}
\]

5.2.3 Recta que passa per un punt que talla a dues rectes

És la recta formada per cada un dels dos plans \[\pi_1,\pi_2\] que contenen a \[r,s\] respectivament i que passa per \[P\]. Per a calcular l’equació d’aquesta recta hem de trobar les equacions dels plans que contenen a \[r:, s:, \; i \; P\]:

  1. Calculem el vector normal de \[\pi_1\] fent el producte vectorial del vector de la recta \[r:\] i el vector \[\vec {PP_r}\].
  2. Calculem el vector normal de \[\pi_2\] fent el producte vectorial del vector de la recta \[s:\] i el vector \[\vec {PP_s}\].
  3. Calculem els plans \[\pi_1,\pi_2\] amb les vectors normals i el punt \[P\].
  4. L’equació de la recta és la formada per les equacions generals dels dos plans.
\[
P(2,3,4)\\
r:
\begin{cases}
x=5-\lambda\\
y=-6+5\lambda\\
z=1+2\lambda
\end{cases}
\\
\vec v_r=(-1,5,2),P_r=(5,-6,1),
\\[1cm]
s:
\begin{cases}
x=1+2\lambda\\
y=-6+\lambda\\
z=3+3\lambda\\
\end{cases}
\\
\vec v_s=(2,1,3),P_s=(1,-6,3)
\\[1cm]
1.
\\\vec {PP_r}=P_r-P=(5,-6,1)-(2,3,4)=(3,-9,-3)\\
\vec n_1=(-1,5,2) \times(3,-9,-3)=(3,3,-6)\\[1cm]
2. \\
\vec {PP_s}=P_s-P=(1,-6,3)-(2,3,4)=(-1,-9,-1)\\
\vec n_2=(2,1,3) \times (-1,-9,-1)=(26,-1,-17)\\[1cm]
3.
\\
\pi_1:3x+3y–6z+D_1=3 \cdot 2+3 \cdot 3-6 \cdot 4+D_1=0,D_1=9\\
\pi_2:26x-1y-17z+D_2=26 \cdot 2-1 \cdot 3-17 \cdot 4+D_2=0,D_2=+19
\\[1cm]
4.
\\t:
\begin{cases}
\pi_1:3x+3y-6z+9=0\\
\pi_2:26x-1y-17z+19=0
\end{cases}
\]

5.3 Recta-pla

Per a determinar la posició relativa d’una recta i un pla comparant punts i vectors usarem les equacions vectorial, paramètrica o continua de la recta i l’equació general del pla. Per fer-ho amb rangs, ens calen les equacions generals de la recta i del pla.

\[
r:
(x,y,z)=(x_r,y_r,z_r)+\lambda(v_{r1},v_{r2},v_{r3})\\
r:\begin{cases}
x=x_r+ \lambda \cdot v_{r1}\\
y=y_r+ \lambda \cdot v_{r2}\\
z=z_r+ \lambda \cdot v_{r3}\\
\end{cases}\\
\frac{x-x_0}{v_{r1}}=\frac{y-y_0}{v_{r2}}=\frac{z-z_0}{v_{r3}}\\
v_r(v_{r1},v_{r2},v_{r3}), \; P_r(x_r,y_r,z_r)\\[1cm]
\pi: A_1x+B_1y+C_1z+D_1=0\\
\vec n=(A,B,C)
\]
Posició relativaComparació punts i vectors
Recta continguda en el pla\[\vec v_r \cdot \vec n=0\; i \; P_r \in \pi\]
Recta i pla paral·lels\[\vec v_r \cdot \vec n=0\; i \; P_r \notin \pi\]
Recta i pla secants\[\vec v_r \cdot \vec n \neq 0\]
Posició relativaRang matriu coeficients(*)Rang matriu ampliada(*)
Recta continguda en el pla22
Recta i pla paral·lels23
Recta i pla secants33

Si la recta està continguda en el pla, el producte escalar del vector de la recta i el normal del pla serà zero i els punts de la recta són punts del pla. Per a saber si un punt de la recta és també un punt del pla el substituirem a l’equació del pla:

Exemple:

\[
r:
\begin{cases}
x=2-5\lambda\\
y=3+3\lambda\\
z=1+\lambda
\end{cases}\\
v_r(-5,3,1), \; P_r(2,3,1)\\[1cm]
\pi:2x+4y-2z-14=0\\
\vec n(2,4,-2)\\[1cm]
\vec v_r \cdot \vec n=(-5,3,1) \cdot (2,4,-2)=-5 \cdot 2+3 \cdot 4-1 \cdot 2=-10+12-2=0\\
\pi(2,3,1)=2 \cdot 2+4 \cdot 3 -2 \cdot 1-14=4+12-2-14=0\\[1cm]
\text{El pla i la recta són paral·lels i la recta està continguda en el pla.}
\]

Si la recta i el pla són paral·lels, el producte escalar dels dos vectors serà zero, però els punts de la recta i del pla són diferents:

\[
r:
\begin{cases}
x=2-5\lambda\\
y=4+3\lambda\\
z=3+\lambda
\end{cases}
\Rightarrow r:
\begin{cases}
3x+5y-26=0\\
x+5z-17=0
\end{cases}\\
\pi:4x+6y+2z-28=0\\[1cm]
\vec v_r(-5,3,1), \; P_r(2,4,3)\\
\vec n_\pi(4,6,2)\\[1cm]
\vec v_r \cdot \vec n_\pi=(-5,3,1) \cdot (4,6,2)=-20+18+2=0 \text{ (Recta i pla són paral·lels)}\\
\pi(2,4,3):4 \cdot 2+6 \cdot 4+2 \cdot 3-28=10 \text{ (Els punts de la recta no śon del pla)}\\[1cm]
\text{Per tant, la recta i el pla són paral·lels}\\[1cm]
\text{Matriu A}=\begin{bmatrix}3 & 5 & 0 \\ 1 & 0 & 5 \\ 4 & 6 & 2 \end{bmatrix}\\
\text{Matriu A*}=\begin{bmatrix}3 & 5 & 0 & 26 \\ 1 & 0 & 5 & 17 \\ 4 & 6 & 2 & 28\end{bmatrix}\\
\text{Rang A}=2 \\
\text{Rang A*}=3 \\
\text{Per tant, la recta i el pla són paral·lels}
\]

Si el pla i la recta són secants , la recta tallarà el pla en un punt (Q). Q serà el punt que resulta de fer el sistema d’equacions generals de la recta i el pla.

\[
r:
\begin{cases}
2x-7y+8z=3\\
3x+5y-z=7
\end{cases}\\
\pi:x+3y-4z=0\\
\begin{bmatrix}2 & -7 & 8 & 3 \\ 3 & 5 & -1 & 7 \\ 1 & 3 & -4 & 0\end{bmatrix}\\
x=1 ,\; y=1 , \; z=1 \\
Q=(1,1,1)
\]

5.4 Pla-pla

Per a determinar la posició relativa de dos plans determinarem els rangs de les equacions generals del plans, o bé compararem els vectors i els punts de cada pla:

Posició relativaComparació punts i vectors
Coincidents\[\frac{A_1}{B_1}=\frac{A_2}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}\]
Paral·lels\[\frac{A_1}{B_1}=\frac{A_2}{B_2}=\frac{C_1}{C_2} \neq \frac{D_1}{D_2}\]
Secants\[\frac{A_1}{B_1} \neq \frac{A_2}{B_2} \neq \frac{C_1}{C_2}\]
Posició relativaRang matriu coeficients(*)Rang matriu ampliada(*)
Coincidents11
Paral·lels12
Secants22
\[
\pi_1: A_1x+B_1y+C_1z+D_1=0\\
\pi_2:A_2x+B_2y+C_2z+D_2=0
\]
Plans coincidents
Plans paral·lels
Plans secants

5.4.1 Plans bisectors

Un pla bisector és un pla que passa per l’aresta d’un angle dièdric i el divideix en dos angles iguals. Un angle dièdric és una regió de l’espai compresa entre dos semiplans que tenen la mateixa recta, anomenada aresta de l’angle dièdric.

Per a calcular els dos plans bisectors que formen l’angle dièdric, farem:

\[
d=\left| \frac{Ax_1+By_1+Cz_1+D_1}{\sqrt{A_1²+B_1²+C_1}²} \right|=\pm \frac{Ax_2+By_2+Cz_2+D_2}{\sqrt{A_2²+B_2²+C_2²}}
\]

Exemple:

\[
P(x_0,y_0,z_0)\\
\pi_1:2x+3y-4z-6=0\\
\pi_2:-3x+4y-2z=0\\[1cm]
d(P,\pi_1)=d(P,\pi_2)\\
\left| \frac{2x_0+3y_0-4z_0-6}{\sqrt{2²+3²+(-4)²}} \right|=\pm \frac{-3x_0+4y_0-2z_0-0}{\sqrt{(-3)²+4²+(-2)²}}\\
\sqrt{29} \cdot (2x_0+3y_0-4z_0-6)=\pm \sqrt{29} \cdot (-3x_0+4y_0-2z_0-0)\\
(2x_0+3y_0-4z_0-6)=+(-3x_0+4y_0-2z_0-0)\\
\sigma_1: 5x-y-2z-6=0\\
(2x_0+3y_0-4z_0-6)=-(-3x_0+4y_0-2z_0-0)\\
\sigma_2: -x+7y-6z-6=0
\]

La distància \[d\] mínima o perpendicular d’un punt \[P\] a un pla (o a una recta) és el mòdul del vector projecció entre un punt del pla (origen) i el punt P (extrem).

El signe del vector distància és positiu si el sentit d’aquest vector és el mateix que el del vector normal del pla, i és negatiu si els sentits d’ambdós vectors són contraris.

5.5 Tres plans

Per a determinar la posició relativa de tres plans hem d’usar les equacions generals dels plans i calcular el rang de la matriu de coeficients i de l’ampliada. En alguns casos, també hem de tenir en compte els vectors directors dels plans per tal de no confondre dues posicions relatives amb el mateix resultat quan comparem els rangs:

\[
\pi_1: A{_1} x+B{_1} y+C{_1} z+D{_1}=0\\
\pi_2: A{_2} x+B{_2} y+C{_2} z+D{_2}_=0\\
\pi_3: A{_3} x+B{_3} y+C{_3} z+D{_3}=0
\]
Posició relativaComparació vectors directoresRang matriu coeficients(*)Rang matriu ampliada(*)
Coincidents11
Paral·lels dos a dos12
Paral·lels i dos de coincidents\[\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}\]12
Secants i diferents22
Dos de coincidents i un de secant\[\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=\frac{D_1}{D_2}\]22
Secants dos a dos23
Dos de paral·lels i un de secant\[\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} \neq \frac{D_1}{D_2}\]23
Secants en un punt33
Tres plan coincidents
Paral·lels dos a dos
Secants i diferents
Dos de coincidents i un de secant
Paral·lels i dos de coincidents
Secants dos a dos
Dos de paral·lels i un de secant
Secants en un punt

6. Distàncies i angles

6.1 Distàncies

6.1.1 Punt-recta

La distància mínima és la distància perpendicular entre el punt i la recta.

El procediment que usarem és el següent:

\[
\left| \vec v_r \right| \cdot d=\left| \vec v \times \vec v_r \right|\\
d=\frac{\left| \vec v \times \vec v_r \right|}{\left| \vec v_r \right|}\\[1cm]
\]

Exemple:

\[
P(1,2,3)\\
r:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-5}{1}\\
\vec v_r=(2,3,1), \; P_r=(1,2,5)\\[1cm]
\vec v=P-P_r=(1,2,3)-(1,2,5)=(0,0,-2)\\
d=\frac{\left| (0,0,-2) \times (2,3,1) \right|}{\left| (2,3,1) \right|}=
\sqrt{\frac{26}{7}} \; u.
\]

També podem calcular la distància de la següent manera (més complicada):

El vector normal \[\vec n\] del pla perpendicular a la recta és el vector de la recta \[\vec v_r\].

  1. l’equació del pla de vector normal \[\vec n\] que conté el punt \[P\].
  2. Trobem el punt d’intersecció de la recta \[Q\] i el pla resolent el sistema d’equacions formats per les equacions generals.
  3. Calculem el mòdul del vector \[\vec {PQ}\].
\[
P_0(1,2,3)\\
r:\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-5}{1}\\[1cm]
1.\\
\vec v_r=\vec n=(2,3,1)\\
\pi:2x+3y+z+D=0 \\[1cm]
2.\\
2 \cdot 1+3 \cdot 2 +1 \cdot 3+D=0, \; D=-11\\
\pi: 2x+3y+z-11=0\\[1cm]
3.\\
\begin{cases}
2x+3y+z=11\\
3x-2y=-1\\
1x-2z=-9
\end{cases}\\
x=\frac{5}{7}, \, y=\frac{11}{7}, \; z=\frac{34}{7}\\[1cm]
4.\\
\vec {PQ}=P-Q=(\frac{5}{7},\frac{11}{7},\frac{34}{7})-(1,2,3)=(-\frac{2}{7},-\frac{3}{7},\frac{13}{7})\\
d=\sqrt{(-\frac{2}{7})²+(-\frac{3}{7})²+(\frac{13}{7})²}=\sqrt{\frac{26}{7}} \; u.
\]

6.1.2 Punt-pla

La distància d’un punt a un pla es calcula fent \[d(P,\pi)=\frac{Ax_0+By_0+Cz_0+D}{\sqrt{A²+B²+C²}}\]. L’equació del pla ha d’estar en forma general.

Exemple:

\[
P_o(3,2,1)\\
\pi:-5x+6y-4z+10=0\\
\\[0.5cm]
d(P_o,\pi)=\left|\frac{-5 \cdot 3+6 \cdot 2-4 \cdot 1+10}{\sqrt{(-5)²+(6)²+(-4)²}}\right|\approx 3.76
\]

6.1.3 Punt-punt

Per a calcular la distància entre dos punts hem de calcular el mòdul del vector entre els dos punts.

Exemple:

\[
P(3,2,1), \; Q(-4,2,2)\\
d(P,Q)=\left|\vec {PQ}\right|=\left|Q-P\right|\\
\left|(-4,2,2)-(3,2,1)\right|=\sqrt{(-7)²+(0)²+(1)²}=\sqrt {50} \; u.
\\[0.5cm]
M=\frac{P+Q}{2}=\frac{(3,2,1)+(-4,2,2)}{2}=(\frac{-1}{2},2,\frac{3}{2})
\]

6.1.4 Recta-recta

Es determina calculant la distància d’un punt d’una recta a l’altra recta.

6.1.5 Recta-pla

Es determina calculant la distància d’un punt de la recta al pla.

6.1.6 Pla-pla

Es determina calculant la distància d’un punt d’un pla a l’altre pla.

6.2 Angles

Per a calcular l’angle entre dos vectors fem:

\[\cos \theta=\frac{\vec u \cdot \vec v}{\left| u \right| \cdot \left| v \right|}\]

Exemple:

\[
\vec v_1(3,2,1), \; \vec v_2(-4,2,2)\\
\cos \theta=\frac{(3,2,1) \cdot (-4,2,2)}{\left|(3,2,1)\right| \cdot \left|(-4,2,2)\right|}\\
\cos \theta=\frac{-6}{\sqrt{14} \cdot \sqrt{24}}=-\frac{\sqrt{21}}{14}\\
\theta=\arccos {(-\frac{\sqrt{21}}{14})}=109.11^{\circ}
\]

6.2.1 Recta-recta

6.2.2 Recta-pla

L’angle entre la recta i el pla és \[90-\theta\]. Aquest angle també es pot calcular directament fent \[\sin \theta=\frac {\vec u \cdot \vec v}{|\vec u| \cdot |\vec v|}\].

6.2.3 Pla-pla

Es calcula de la mateixa manera que l’angle entre dues rectes l’angle_entre dues rectes fent servir els vectors normals dels plans.


  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Geometria en el pla

1. Equacions de la recta

(Vegeu Vectors en el pla per a saber-ne més.)

1.1 Definició

Una recta és un conjunt de punt infinits en línia. Podem definir una recta amb dos punts o amb un punt i un pendent.

punt-punt
punt -pendent

1.2 Equacions de la recta

L’equació d’una recta es pot expressar de diferents maneres. Farem sevir l’equació que més ens convingui per tal de fer els càlculs més fàcilment o segons les dades disponibles.

1.3 Equació vectorial

L’equació vectorial de la recta es dedueix de la definició d’una recta amb dos punts: si a un punt d’origen de la recta que volem definir li sumem un nombre determinat de vegades (\[t\]) un dels vectors directors de la recta podem trobar-ne qualsevol altre punt.

\[(x,y)=(x_0,y_0) + t \cdot (u,v)\]

1.4 Equació paramètrica

Igualant els components \[x\] i \[y\] de l’equació vectorial:

\[
x=x_0+t \cdot u\\
y=y_0+ t \cdot v
\]

1.5 Equació contínua

Aïllant el paràmetre \[t\] de cadascuna de les equacions paramètriques anteriors:

\[
t=\frac{x-x_0}{u}=\frac{y-y_0}{v}
\]

1.6 Equació general o implícita

Surt de fer el producte d’extrems i de mitjos de l’equació contínua:

\[
v \cdot (x-x_0)=u \cdot (y-y_0)\\
v \cdot x-v \cdot x_0=u \cdot y-u \cdot y_0\\
v \cdot x-u \cdot y-v \cdot x_0+u \cdot y_0=0\\
A=v, \, B=-u, \, C=-v \cdot x_0+u \cdot y_0\\
Ax+By+C=0
\]

El vector \[\vec{n}=(A,B)\] és un dels dos vectors perpendiculars de la recta. Per a calcular el vector perpendicular d’una recta tan sols hem de permutar els components del vector i canviar-ne un de signe.

Els vectors perpendiculars de dues rectes formen el mateix angle que els vectors directors.

Exemple:

\[\vec{v}=(9,-6) \rightarrow \vec{n_1}=(6,9), \enspace \vec{n_2}=(-6,-9)\].

1.7 Equació explícita

Aïllant la \[y\] de l’equació general:

\[
y=-\frac{A}{B} \cdot x-\frac{C}{B}\\
m=-\frac{A}{B}, \, n=-\frac{C}{B}\\
y=m \cdot x+n
\]

1.8 Equació punt-pendent

Es dedueix de la definició de la recta amb un punt i un pendent:

\[
(y-y_0)=m \cdot (x-x_0)
\]

1.9 Equació canònica

Els denominadores de l’equació canònica són les coordenades \[x\] i \[y\] del punts de tall amb els eixos de coordenades \[(a,0)\] i \[(0,b)\]:

\[
Ax+By+C=0\\
\frac{A}{-C}x+\frac{B}{-C}y+\frac{C}{-C}=0\\
\frac{x}{\frac{-C}{A}}+\frac{y}{\frac{-C}{B}}=1\\
a=\frac{-C}{A|}, \, b=\frac{-C}{B}\\
\frac{x}{a}+\frac{y}{b}=1
\]

Exemple:

\[
P (2,3), \, Q=(-4,6)\\[0.5cm]
Calculem \enspace el \enspace vector \enspace director\\
\vec{PQ}=(-4,6)-(2,3)=(-6,3) \enspace \\[0.5cm]
Equació \enspace vectorial)\\
(x,y)=(2,3)+t\cdot (-6,3) \\[0.5cm]
Equació \enspace paramètrica\\
x=2-6t\\
y=3+3t \\[0.5cm]
Equació \enspace contínua\\
t=\frac{x-2}{-6}=\frac{y-3}{3} \\[0.5cm]
Equació \enspace implícita \enspace o \enspace general\\
3(x-2)=-6(y-3)\\
3x-6+6y-18=0\\
3x+6y-24=0 \\[0.5cm]
Equació \enspace explícita\\
y=-\frac{3}{6}x+\frac{24}{6}\\
y=-\frac{1}{2}x+6 \\[0.5cm]
Equació \enspace canònica\\
\frac{x}{\frac{24}{3}}+\frac{y}{\frac{24}{6}}=1\\
\frac{x}{8}+\frac{y}{4}=1\\[0.5cm]
Equació \enspace punt-pendent\\
(y-2)=-\frac{1}{2}(x-3)
\]

2. Posició relativa de dues rectes

O bé dues rectes són paral·leles, o bé són secants. Per a determinar si dues rectes son paral·leles o coincidents (paral·lelisme) o secants (amb un angle qualsevol o perpendiculars) resoldrem el sistema d’equacions lineals.

rectes perpendiculars (t:, s:) o secants amb un angle diferent de 90º (r:,s:).
Rectes parale·les (r:, s:) o coincidents (r:, t:)

(Vegeu Classificació dels sistemes d’equacions per a saber-ne més.)

3. Distàncies i angles

Calcularem la distància mínima o perpendicular entre un punt i una recta usant la fórmula següent:

\[
d(P,r)=\frac{Ax_0+By_0+C}{\sqrt{A²+B²}}\\
\]

Exemple:

\[
P(-5,7), \enspace r:3x+6y-24=0\\
d(P,r)=\frac{3 \cdot -5+6 \cdot 7-24}{\sqrt{3²+6²}}=\frac{3}{\sqrt{45}}=\frac{1}{\sqrt{5}}u.
\]

Calcularem l’angle entre dues rectes secants amb la fórmula següent:

\[
\cos \theta=\frac{\vec u \cdot \vec v}{|u| \cdot |v|}\\
\theta=\arccos {\frac{\vec{u} \cdot \vec{v}}{|u| \cdot |v|}}
\]

Exemple:

\[
r:3x+6y-24=0, \enspace s:-5x+4y+9=0\\
\vec{n_r}=(3,6), \enspace \vec{n_s}=(-5,4)\\
\theta=\arccos \frac{(3,6) \cdot (-5,4)}{\sqrt{3²+6²} \cdot \sqrt{(-5)²+4²}}\\
\theta=\frac{-15+24}{\sqrt{45*41}}=\frac{9}{\sqrt{1845}}=\frac{9}{3\sqrt{205}}=\frac{3}{\sqrt{205}}॰
\]

  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Integració

1. Definició

La integració (antiderivada) és el càlcul de la funció primitiva \[F(x)\] d’una funció \[f(x)\] . Si \[f(x)=F'(x) \Rightarrow \int f(x) \; dx=F(x)\].

La integració i la derivació són funcions inverses.

1.1 Propietats de les integrals

Si \[ f(x)\] és la funció derivada d’una funció primitiva \[ F(x)\]:

1.1.1 \[\int {k \cdot f(x) \;dx}= k \cdot \int{f(x) \;dx}\]

1.1.2 \[\int {f(x)+g(x)\;dx}= \int{f(x) \;dx+\int{g(x) \;dx}}\]

1.1.3 \[\int {d[f(x)]}= f(x)\]

2. Integrals indefinides

Una integral indefinida són totes les funcions primitives \[F(x)\] d’una funció \[f(x):\] \[\int f(x) \enspace dx=F(x)+C\]. Les diferents funcions es diferencien una de l ‘altra tan sols per un paràmetre \[C\].

Exemple:

\[
F(x)=6x³-2x²+7x+8\\
f(x)=18x²-4x+7\\
F(x)=\int f(x) \; dx=\int (18x²-4x+7) \enspace dx=6x³-2x²+7x+C
\]

A la integral d’una funció derivada (primitiva) li hem d’afegir una constant \[C\] perquè la derivada d’una constant és zero, i quan derivem la primitiva aquesta constant es perd. Aquest paràmetre és el deplaçament vertical de la funció.

3. Integrals immediates

Són les integrals que s’obtenen de les regles de derivació invertides:

Exemple:

\[
F(x)=x^n\\
f(x)=\frac{d[F(x)]}{dx}=\frac{d}{dx}x^n=n \cdot x^{n-1}\\
d[F(x)]=f(x) \; dx=n \cdot x^{n-1} \; dx\\[0.5cm]
\text{Per tant}:\\[0.5cm]
F(x)=\int {f(x) \; dx}=n \, \int {x^{n-1}} \enspace dx=x^n+C
\]

Les integrals obtingudes d’aquesta manera formen la taula d’integrals.

3.1 Taula d’integrals immediates

f (x)f(u)F(x)F(u)
\[\int dx\enspace\]\[\int du\]\[x+C\]\[u+C\]
\[\int k \enspace dx\]\[\int k \enspace du\]\[kx+C\]\[ku+C\]
\[\int {\frac{dx}{x}} \enspace dx\]\[\int {\frac{du}{u}} \enspace dx\]\[\ln x+C\]\[\ln u+C\]
\[\int e^x \enspace dx\]\[\int e^u \enspace du\]\[e^x+C\]\[e^u+C\]
\[\int a^x \enspace dx\]\[\int a^u \enspace du\]\[\frac{a^x}{\ln a}+C\]\[\frac{a^u}{\ln a}+C\]
\[\int \sin x \enspace dx\]\[\int \sin u \enspace du\]\[-\cos x+C\]\[-\cos u+C\]
\[\int \cos x \enspace dx\]\[\int \cos u \enspace du\]\[\sin x+C\]\[\sin u+C\]
\[\int \tan x \enspace dx\]\[\int \tan u \enspace du\]\[-\ln |\cos x |+C\]\[-\ln |\cos u |+C\]
\[\int \frac{1}{\sqrt{1-x²}} \enspace dx\]\[\int \frac{1}{\sqrt{1-u²}} \enspace du\]\[\arcsin x+C\]\[\arcsin u+C\]
\[\int \frac{-1}{\sqrt{1-x²}} \enspace dx\]\[\int \frac{-1}{\sqrt{1-u²}} \enspace du\]\[\arccos x+C\]\[\arccos u+C\]
\[\int \frac{1}{1+x²} \enspace dx\]\[\int \frac{1}{1+u²} \enspace du\]\[\arctan x+C\]\[\arctan u+C\]

La resolució és immediata, la integral d’una de les funcions derivades de la columna esquerra és la funció primitiva que li correspon de la columna de la dreta.

Per la regla de la cadena de derivació de funcions compostes, la integral ha d’encloure \[du\] la derivada d’ \[u\]:

\[
F(x)=e^{2x²+3x} \rightarrow F'(x)=f(x) \; dx=e^{2x²+3x} \cdot (4x+3) \; dx\\
\int {f(x) \; dx}=\int {e^{2x²+3x} \; (4x+3) \; dx}\\
[u=2x²+3x, \; du=(4x+3) \; dx]\\
\int {e^{2x²+3x} \; (4x+3) \; dx}= \int e^u \; du
\]

4. Mètodes d’integració

Si hem de resoldre una integral que no és immediata, haurem de descompondre-la en una o més integrals que sí són immediates i després resoldre cadascuna d’aquestes intergrals.

Els procediments de descompondre la integral original en integrals de la taula d’integrals immediates són els mètodes d’integració.

La tria del mètode d’integració dependrà de la funció que volem integrar. L’ordre de verificació del mètode d’integració més adient, és:

  1. Integral immediata (vist en l’apartat anterior)
  2. Integral quasi immediata
  3. Integral per parts
  4. Descomposició en fraccions simples
  5. Trigonomètrica
  6. De substitució

En aquesta entrada veurem com es fan sobretot els mètodes \[1,2,3,4\].

4.1 Integrals quasi immediates

Són integrals que no són immediates però que es poden transformar fàcilment en immediates fent algunes transformacions simples. Es resolen usant la taula d’integrals i les propietats de les integrals. De fet, es resolen per mètodes de susbstitució molt senzills.

Exemple:

\[
\int \frac{x}{x²+6} \enspace dx \\
[u=x²+6, \, du=2x \; dx]\\
\frac{1}{2}\int \frac{2x}{x²+6} \enspace dx\\
\frac{1}{2}\int \frac{du}{u}\\
\frac{1}{2}\ln u+C\\
\frac{1}{2}\ln (x²+6)+C\\
\]

En aquest exemple, hem usat la tercera integral immediata de la taula d’integrals i la primera propietat de les integrals per a resoldre la integral de l’exemple.

4.3 Integrals per parts

Quan la funció que volem integrar és el producte de dues funcions i no es una integral immediata o quasi immediata, intentarem resoldre-la per parts.

La fórmula que usarem per a aplicar aquest mètode és \[\int {u \; dv}=u \cdot v – \int {v \; du}\]. El perquè d’aquesta fórmula és:

\[
d(u \cdot v)=v \cdot du + u \cdot dv\\
\int {d(u \cdot v)}=\int {v \cdot du} + \int{u \cdot dv}\\
\int {u \cdot dv}=u \cdot v-\int v \cdot du+C
\]

La integral \[\int v \; du\] ha de ser més fàcil de resoldre que la integral original \[\int u \; dv\] i el terme de susbstitució \[dv\] ha d’incloure sempre el terme \[dx\] de la integral original.

Exemple:

\[
I=\int \ln x \; dx\\
u=\ln x \rightarrow du=\frac{dx}{x}\\
dv=dx \rightarrow v=\int {dx}=x\\[1cm]
I=\ln x \cdot x-\int{x \frac{dx}{x}}\\
I=\ln x \cdot x-\int{dx}\\
I=\ln x \cdot x-x\\
I=x(\ln x -1)+C\\
\]

De vegades, quan la integral està formada per les funcions \[e^u, \; \sin x/ \cos x\], haurem d’integrar per parts dues o més vegades:

\[
I=\int {e^{x} \, \sin x \; dx} \\
u=\sin x \rightarrow du= \cos x \; dx\\
dv=e^x \; dx \rightarrow v=\int {e^x \; dx}=e^x\\[1cm]
\int {u \; dv}=\int { e^x \; \sin x \; dx}\\
u \cdot v= \sin x \cdot e^x\\
\int {v \; du}=\int e^x \; \cos x \; dx\\[1cm]
I=\sin x \; e^x-\int e^x \; \cos x \; dx\\
I=\sin x \; e^x- \; I_1\\[1cm]
I_1=\int e^x \; \cos x \; dx\\
u=\cos x \rightarrow du= -\sin x \; dx\\
dv=e^x \; dx \rightarrow v=\int {e^x \; dx}=e^x\\[1cm]
I_1= \cos x \; e^x+\int{\sin x \; e^x \; dx}\\
I_1=\cos x \; e^x+I\\
I=\sin x \; e^x-(\cos x \; e^x+I)\\
2I=\sin x \; e^x-\cos x \; e^x\\
I=\frac{e^x(\sin x-\cos x)}{2}
\]

2.4 Per descomposició en fraccions simples

La descomposició en fraccions simples és el procediment invers de l’operació de suma de fraccions algebraiques.

2.4.1 Si N(x) ≥ D(x):

Quan la funció que volem integrar és una funció racional \[f(x)=\frac{N(x)}{D(x)}\] i la integral no es pot resoldre més fàcilment per cap dels mètode anteriors, farem servir aquest mètode, tenint em compte que:

\[
N(x)=q(x) \cdot D(x)+r(x)\\
\frac{N(x)}{D(x)}=q(x)+\frac{r(x)}{D(x)}\\
\]

\[N(x)\] és el polinomi del numerador, \[D(x)\] és el polinomi del denominador, \[q(x)\] és el polinomi del quocient i \[r(x)\] és el polinomi residu de la divisió polinòmica.

Per a resoldre la integral, farem el següents passos:

  1. Farem la divisió polinòmica \[\frac{N(x)}{D(x)}\].
  2. Descompondrem la funció f(x) en dues o més integrals: \[q(x)+\frac{r(x)}{D(x)}\].
  3. Resoldrem cada integral amb el mètode més adient.

Exemple:

\[
\int {\frac{x³+2x²-5x+1}{x²+1}}\\[1cm]
1. \; \frac{x³+2x²-5x+1}{x²+1}=(x+2)-\frac{6x+1}{x²+1}\\
2. \; \int {x \; dx}+2 \int {dx}-6 \int{\frac{x}{x²+1} \; dx}-1 \int {\frac{dx}{x²+1}}\\
3. \; \int {x \; dx}+2 \int {dx}-\frac{6}{2} \int{\frac{2x}{x²+1} \; dx}-1 \int {\frac{dx}{x²+1}}\\
\frac{x²}{2}+2x-3 \ln {(x²+1)}-1 \arctan {(x²+1)}+C
\]

2.4.2 Si N(x) < D(x):

Com que no és possible fer la divisió polinòmica, farem la descomposició en fraccions parcials. Recordeu que la descomposició en fraccions parcials és el procediment invers de l’addició de fraccions.

La seqüència del procediment és la següent:

Exemple:

1.Factoritzarem el denominador de la funció racional fins a obtenir-ne polinomis irreductibles. Els factors seran, o bé binomis lineals (x+a), o bé polinomis quadràtics irreductibles (ax²+bx+c).

2.Transformarem la funció racional en diferents fraccions de la següent manera: la fracció que correspon a cada factor lineal (x+a) és \[\ \frac{A}{(x+a)}\] (A és un valor constant).
La fracció que correspon a cada factor quadràtic (ax²+bx+c) és \[\frac{Ax+B}{(ax²+bx+c)}\]. En ambdós casos, a cada factor li corresponen tantes fraccions com multiplicitat o nombre de solucions múltiples tingui el factor.

Exemple:

\[
1.\frac{2x²+5}{x⁷+6x⁶+14x⁵+20x⁴+25x³+22x²+12x+8}\\
\frac{2x²+5}{(x+2)³ (x²+1)²}\\[0.5cm]
\text{Factor lineal: (x+2), multiplicitat 3}\\
\text{Factor quadràtic: (x²+1), multiplicitat 2}\\[0.5cm]
2.\frac{2x²+5}{(x+2)³ (x²+1)²}=\frac{A}{(x+2)³}+\frac{B}{(x+2)² }+\frac{C}{(x+2)¹}+\frac{Dx+E}{(x²+1)²}+\frac{Fx+G}{(x²+1)¹}
\]]

3.Farem l’addició de fraccions i eliminarem els denominadors.

4.Igualarem els coeficients de cada monomi del numerador amb els coeficients dels monomis semblants del denominador.

5.Resoldrem el sistema d’equacions obtingut.

6.Un cop feta la descomposició de la funció racional en fraccions més simples, farem les integrals de cada fracció.

Exemple:

\[
\int {\frac{4x²-2x}{x⁴ +4x³+5x²+4x+4} \; dx}\\[1cm]
1.\\
\frac{4x²-2x}{x⁴ +4x³+5x²+4x+
4}=\frac{4x²-2x}{(x+2)² \cdot (x²+1)}\\[0.5cm]
2. \\
\frac{4x²-2x}{x⁴+4x³+5x²+4x+4}=\frac{A}{(x+2)²}+\frac{B}{(x+2)}+\frac{Cx+D}{(x²+1)}\\[0.5cm]
3.\\
4x²-2x=A(x²+1)+B(x+2)(x²+1)+(Cx+D)(x+2)²\\
A(x²+1)+B(x³+2x²+x+2)+(Cx+D)(x²+4x+4)\\
Ax²+A+Bx³+2Bx²+Bx+2B+Cx³+4Cx²+4Cx+Dx²+4Dx+4D\\[0.5cm]
4.\\
0x³=(B+C)x³\\
4x²=(A+2B+4C+D)x²\\
-2x=(B+4C+4D)x\\
0=A+2B+4D\\[0.5cm]
5.\\
0=B+C\\
4=(A+2B+4C+D)\\
-2=(B+4C+4D)\\
0=A+2B+4D\\
A=4,B=-\frac{4}{10},C=\frac{4}{10}, \, D=-\frac{8}{10}\\[0.5cm]
6.\\
\int {\frac{4x²-2x}{x⁴ +4x³+5x²+4x+
4}}= 4\int{\frac{dx}
{(x+2)²}}-\frac{4}{10}\int{\frac{dx}{(x+2)}}+\int { \frac{\frac{4x}{10}-\frac{8}{10}}{(x^2+1)} }\\
-\frac{4}{x+2}-\frac{4}{10}\ln(x+2)+\frac{1}{10}[ \int{ \frac{4x}{x²+1} \; dx-8\int{\frac{dx}{x²+1}} } \; dx ]\\
-\frac{4}{x+2}-\frac{4}{10}\ln(x+2)+\frac{1}{10}[2 \; \ln {(x²+1)}-8 \arctan{(x²+1)} ]+C
\]

2.5 Per substitució o canvi de variable

En aquest mètode es modifica la funció \[f(x)\] substituint-ne una part per una expressió algebraica perquè la funció resultant sigui més fàcil d’integrar. Aquests expressió es funció d’una nova variable independent \[g(t)\].

El mètode de substitució o de canvi de variable per a calcular primitives té el seu origen en la regla de la cadena per a derivades.

El procediment per a aquest mètode és:

1.Trobar el canvi de variable adient que transformi la funció \[f(x)\] en una altra de més senzilla.
2.Calculem la funció \[g(t)\] que resulta de fer el canvi de variable i substituim \[f(x)\] per aquesta funció.
3.Fent servir el canvi de variable, calculem i substituim \[dx\].
4.Resolem la integral \[\int {g(t) \; dt}\].
5.Desfem el canvi.

Exemple:

\[
\int {\frac{x²}{\sqrt{1+x³}}dx}\\[1cm]
1.\\
1+x³=t²\\[0.5cm]
2.\\
x² \hspace{1.3cm}: \; x=\sqrt[3]{t²-1} \Rightarrow x²=\sqrt[3]{(t²-1)²}\\[0.5cm]
\sqrt{1+x³}: \;\sqrt{1+x³}=t²\\[0.5cm]
3.\\d(1+x³)=d(t²), \; 3x²dx=2tdt\\[0.5cm]
4.\\
\frac{1}{3}\int {\frac{2t}{t}dt}\\
\frac{2}{3}t+C\\
5.\\
\frac{2}{3}\sqrt{1+x³}+C
\]

2.5.1 Canvis de variable més habituals

\[ \int f(ax+b) \ dx = \frac {1}{a} \int f(u) \ du\]\[u=ax+b\]
\[ \int f(\sqrt{ax+b} \ dx = \frac{2}{a} \int u\cdot f(u) \ du\] \[u=\sqrt{=ax+b}\]
\[ \int f(\sqrt[n]{ax+b}) \ dx= \frac{n}{a} \int u^{n-1} f(u) \ du\] \[u=\sqrt[n]{ax+b}\]
\[ \int f(\sqrt{a^2+b^2}) \ dx= a \int f(a\cdot \cos u ) \ du\]\[u=a\cdot\sin u\]
\[ \int f(e^{ax}) \ dx = \frac{1}{a} \int \frac{f(u)}{u} \ du\]\[u=e^{ax}\]
\[ \int f(\ln x) \ dx=\int f(u) e^u du\]\[u=\ln x\]

3. Integrals definides

Una integral definida és la integració d’una funció \[f(x)\] en un interval del seu domini: \[A=\int_{a}^{b}{f(x)\; dx}\].

\[a,b\] són els límits inferior i superior de l’interval.

El valor \[A\] de la integral representa l’àrea tancada per la funció entre els límits \[a,b\] i l’eix \[OX\].

Si calculem l’àrea que hi ha dessota de la funció (línia carabassa) aproximant-la a la del rectangle verd, podríem fer un error important. Però si dividim l’àrea en rectangles petits, calculem l’àrea de cadascun, i en fem la suma, el resultat serà més aproximat i l’error més petit. El cálcul serà més precís com més estrets siguin els rectangles. Si l’amplada dels rectangles és infinitesimal (infinitament petita), el resultat serà pràcticament exacte ( \[dx=\Delta x \rightarrow 0\]).

3.1 Regla de Barrow

Per fer el cálcul d’una intergral definida usem la regla de Barrow (el segon teorema fonamental del càlcul:

\[A=\int_{a}^{b}{f(x) \; dx}=F(b)-F(a)\]

Exemple:

\[
\int_{2}^{4}{x^2-3x+6} \; dx\\
{\frac{x³}{3}-3\frac{x²}{2}+6x}\; |^{4}_{2}\\
\frac{1}{3}(4³-2³)-\frac{3}{2}(4²-2²)+6(4-2)\\
\frac{1}{3}(64-8)-\frac{3}{2}(16-4)+6(4-2)\\
\frac{56}{3}-\frac{3}{2}(12)+6(2)\\
\frac{56}{3}-\frac{36}{2}+12=\frac{38}{3}u^2
\]

El procediment per a calcular l’àrea tancada per dues o meś funcions entre els límits \[a, b\] i l’eix \[OX\], és el següent:

  1. Calculem els límits inferior i superior resolent el sistema d’equacions format per les equacions de les funcions.
  2. Calculem l’àrea tancada per les funcions entre límits i l’eix OX: \[A=|\int_{a}^{b}{(y_1-y_2)}|\]

El càlcul de la integral es fa amb valor absolut per evitar que l’àrea sigui negativa.

Exemple:

\[
y_1=x²-5x+7\\
y_2=-x+7\\[1cm]
1.\\
y_1=y_2\\
x²-5x+7=-x+7\\
x²-4x=0\\
x=0,+4\\[1cm]
2.\\
A=|\int_{0}^{+4}{(x²-4x) \; dx}\; |\\
|{\frac{x³}{3}–4\frac{x²}{2}|}^{+4}_{0}|\\
|\frac{1}{3}[{4³}-(0)³]–2[(4²-(0)²]|\\
|\frac{64}{3}-32|=\frac{32}{3}u²
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Programació lineal

1. Definició

La programació lineal és la part de les matemàtiques que determina el valor de les variables restringides \[x, y\] d’una funció \[f(x,y)\] que es vol maximitzar o minimitzar. La funció i les restriccions són funcions lineals.

A batxillerat, també s’estudia com fer l’optimització de funcions no lineals de dues variables.

(Vegeu també l’entrada Inequacions per a saber-ne més)

2. Resolució

Els passos per a resoldre els exercicis de programació lineal són:

  1. Es llegeix atentament l’exercici per tal de plantejar l’equació de la funció i el sistema d’inequacions de les restriccions.
  2. S’escriu l’equació de la funció que es vol optimitzar i les inequacions de les restriccions: la pregunta de l’exercici ens indica quines són les variables que hem de calcular. Per tant,  assignarem les incògnites \[x,y\] a aquestes variables per a construir la taula de restriccions.
  3. Dibuixem la regió factible delimitada pel sistema d’inequacions.
  4. Calculem els vèrtexs de la regió factible.
  5. Introduïm el valor de cada vèrtex a la funció i en calculem el valor.
  6. Determinem el valor de la funció més gran (màxim) o més petit (mínim).

Exemple (PAU juny 2001):



  1. En un taller de confecció es disposa de 80 metres quadrats de tela de cotó i de 120 metres quadrats de tela de llana. Es fan dos tipus de vestits, A i B. Per fer un vestit del tipus A es necessita 1 metre quadrat de cotó i 3 metres quadrats de llana; en canvi, per un vestit del tipus B calen 2 metres quadrats de cada tipus de tela.

    a) Quants vestits de cada tipus s’han de fer per obtenir un benefici total màxim si per cada vestit (sigui del tipus que sigui) es guanyen 30 euros?

    b) Quina seria la conclusió a la pregunta anterior si per cada vestit del tipus A es guanyen 30 euros i, en canvi, per cada un del tipus B només es guanyen 20 euros.

2.

Nombre de vestits A: \[x\]
Nombre vestits B: \[y\]

Funció objectiu: \[f(x,y)=30x+30y\]

Taula de restriccions:

AB
Llana\[3x\]\[2y\]\[\leq 120\]
Cotó\[1x\]\[2y\]\[\leq 80\]

3.

Per a delimitar la regió factible, dibuixarem la funció lineal de cada inequació.

Cada funció divideix el pla en dos semiplans. Per a determinar quin és el semiplà solució, substituirem un punt qualsevol del pla en la inequació. El punt que triem no ha de ser un punt de les rectes de les inequacions. Normalment agafem el (0,0) per comoditat de càlcul.

Si es compleix la inequació, el semiplà solució és el pla al qual pertany el punt anterior, sinó és l’altre.

Farem el mateix procediment per a cada inequació. La regió comuna als semiplans és la regió factible.

Exemple:

\[
x+2y \leq 80\\
0+2 \cdot 0=0\\
0 \leq 80\\[1cm]
3x+2y \leq 120\\
3 \cdot 0+2 \cdot 0=0\\
0 \leq 120\\
\]

4.

Per a calcular el vèrtex de color blau, fem el sistema d’equacions:

\[
y=\frac{80-x}{2}=\frac{120-3x}{2}\\
2(80-x)=2(120-3x)\\
80-120=-3x+x\\
2x=40\\
x=20\\[1cm]
y=\frac{80-x}{2}\\
y=30
\]

5.

\[
f(40,0)=30.40+30.0=1 200\\
f(0,40)=30.0+30.40=1 200\\
f(20,30)=30.20+30.30=\textbf {1 500}
\]

6. El punt que maximitza la funció és el \[\textbf {(20,30).}\]

La solució de l’apartat b) és:

\[
f(x,y)=30x+20y\\[0.5cm]
f(40,0)=30.40+20.0=1 200\\
f(0,40)=30.0+20.40=800\\
f(20,30)=30.20+20.30=\textbf {1 200}
\]

6. El punt que maximitza la funció és també el \[\textbf {(20,30).}\]

  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Derivades

1. Definició

La derivada d’una funció en un punt és el valor del pendent de la recta tangent en aquest punt.

El pendent o la inclinació (\[\varphi\]) de la línia de color blau (taxa de variació mitjana) és \[\frac{y_2-y_1}{x_2-x_1}\].

Però aquesta inclinació no coincideix amb la inclinació de la recta tangent en el punt de tangència \[x_1\] (línia de color carabassa). Les inclinacions coincidiran quan la diferència entre \[x_2\] i \[x_1 \enspace (h)\] sigui infinitament petita.

\[
lim_{h\to 0}\frac{y_2-y_1}{x_2-x_1}=lim_{h\to 0}\frac{y_2-y_1}{(x_1+h)-x_1}=lim_{h\to 0}\frac{f(x_1+h)-f(x_1)}{h}=lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
\]

Ara bé, si introduïm cadascuna de les funcions elementals en el la fórmula de la definició de derivada anterior i fem els càlculs necessaris, el resultat que obtenim és la funció derivada. La funció derivada és la funció que ens informa del pendent de la funció primitiva o sense derivar en qualsevol punt.

Exemple:

\[
\textbf{y=x²}
\\
lim_{h\to 0}\frac{f(x+h)²-f(x²)}{h}
\\
lim_{h\to 0}\frac{f(x+h)²-f(x²)}{h}
\\
lim_{h\to 0}\frac{x²+2xh+h²-x²}{h}
\\
lim_{h\to 0}\frac{h(2x+h)}{h}
\\
lim_{h\to 0}{2x+h}=2x
\\
\textbf {y’=2x}
\]

D’aquesta manera, obtenim la taula de derivades de les funcions elementals:

\[f(x)\]\[f'(x)\]
\[y=k\]\[y’=0\]
\[y=x\]\[y’=1\]
\[y=kx\]\[y’=k\]
\[y=x^n\]\[y’=nx^{(n-1)}\]
\[y=\ln x\]\[y’=\frac{1}{x}\]
\[y=e^x\]\[y=e^x\]
\[y=\log_a x\]\[y’=\frac{1}{x.ln a}\]
\[y=a^x\]\[y=a^x. \ln a\]
\[y=\sin x\]\[y’=\cos x\]
\[y=\cos x\]\[y’=-\sin x\]
\[y=\tan x\]\[y’=sec²x\]
\[y=\arcsin x\]\[y’=\frac{1}{\sqrt{1-x²}}\]
\[y=\arccos x\]\[y’=-\frac{1}{\sqrt{1-x²}}\]
\[y=\arctan x\]\[y’=\frac{1}{1+x²}\]

2. Propietats de les derivades:

Les propietats de les derivades són:

a) Derivada d’una suma/ diferència de funcions: \[[f(x)+g(x)]’=f'(x)+g'(x)\]

b) Derivada d’un producte de funcions: \[[f(x) \cdot g(x)]’=f'(x) \cdot g(x)+f(x) \cdot g'(x)\]

c) Derivada d’un quocient de funcions: \[[\frac{f(x)}{g(x)}]’=\frac{f'(x) \cdot g(x)-f(x) \cdot g'(x)}{[g'(x)]²}\]

3. Regla de la cadena

Si \[f(x)\] i \[g(x)\] són dues funcions derivables i \[h(x)\] és la funció composta d’aquestes dues funcions, la derivada d’ \[h(x)=f(x) ∘ g(x)= f[g(x)]\] és \[h'(x)=f'[g(x)] \cdot g'(x)\].

Exemple:

\[
f(x)=\sin x,g(x)=x²+2
\\
h(x)=f(x) ∘ g(x)=f[g(x)]=sin(x²+2)
\\
h'(x)=f'[g(x)] \cdot g'(x)=[\sin (x²+2)]’ \cdot (x²+2)’=cos(x²+2) \cdot 2x
\]

Per tant, la taula de derivades d’una funció composta és:

\[h(x)\]\[h'(x)\]
\[y=k\]\[y’=0\]
\[y=k \cdot h(x)\]\[y’=k \cdot h'(x)\]
\[y=h(x)^n\]\[y’=n \cdot h(x)^{n-1} \cdot h'(x)\]
\[y=\ln h(x)\]\[y’=\frac{h'(x)}{h(x)}\]
\[y=e^{h(x)}\]\[y=e^{h(x)} \cdot h'(x)\]
\[y=\log_a h(x)\]\[y’=\frac{h'(x)}{h(x).ln a}\]
\[y=a^{h(x)}\]\[y=a^{h(x)} \cdot \ln a \cdot h'(x)\]
\[y=\sin h(x)\]\[y’=\cos h(x) \cdot h'(x)\]
\[y=\cos h(x)\]\[y’=-\sin h(x) \cdot h'(x)\]
\[y=\tan h(x)\]\[y’=sec²h(x) \cdot h'(x)\]
\[y=\arcsin h(x)\]\[y’=\frac{h'(x)}{\sqrt{1-h²(x)}}\]
\[y=\arccos h(x)\]\[y’=-\frac{h'(x)}{\sqrt{1-h²(x)}}\]
\[y=\arctan h(x)\]\[y’=\frac{h'(x)}{1+h²(x)}\]

4. Aplicacions de les derivades

4.1 Monotonia i punts crítics d’una funció

La monotonia d’una funció es refereix al creixement i decreixement de la funció en cada interval del domini.

Els punts crítics d’una funció són els punts que anul·len la primera derivada (\[y’=0\]). Aquests punts són els possibles màxims, mínims i punts d’inflexió de la funció.

4.1.1 Monotonia, màxims i mínims

Els màxims i mínims són els punts en els quals canvia la monotonia o creixement de la funció.

El punt en el qual la monotonia de la funció canvia de decreixent a creixent, és un mínim. En aquest punt, la inclinació o pendent és zero, abans d’aquest punt és negativa i després és positiva.

Exemple:

PUNTS CRÍTICS, MÍNIM

\[
y=x²+4x+4\\
y’=2x+4=0\\
x=-2\\
y(-2)=(-2)²+4(-2)+4=0\\
\textbf {Mínim(-2,0)}
\]

El punt en el qual la monotonia de la funció canvia de creixent a decreixent, és un màxim. En aquest punt, la inclinació o pendent és zero, abans d’aquest punt és positiva i després és negativa.

\[
y=-x²+2x\\
y’=-2x+2=0\\
x=1\\
y=-(1)²+2 \cdot 1=1\\
\textbf{(1,1)}
\]

4.1.2 Curvatura i punts d’inflexió

Els punts d’inflexió són els punts en els quals canvia la curvatura de la funció. La curvatura indica el canvi de direcció de les tangents d’una funció entre dos punts de tangència.

La curvatura en un interval és positiva si la la gràfica de la funció està per sobre la de la recta tangent.

La curvatura en un interval és negativa quan la gràfica de la funció està per sota de la recta tangent.

Si una funció té curvatura positiva en un interval, tindrà un punt mínim en aquest interval. Si una funció té curvatura negativa en un interval, tindrà un màxim en aquest interval.

Per a determinar els punts d’inflexió, farem la segona derivada igual a zero \[y”=0\]. Si hi ha un canvi de signe (concavitat) en un punt, aquest punts és un punt d’inflexió.

Exemple:

\[
y=x³-3x²-5x+8
\\
y’=3x²-6x-5
\\
y”=6x-6=0
\\x=1
\]

Una altra manera de determinar si un punt singular és un màxim o un mínim, es fent la segona derivada i determinant el signe en aquest punt: si és positiu serà un mínim i si és negatiu serà un màxim.

Exemple:

\[
y=x²+4x+4 \rightarrow y’=2x+4 \rightarrow y”=2 \enspace \text{(convavitat positiva: mínim)}
\\
y=-x²+2x \rightarrow y’=-2x+2 \rightarrow y”=-2 \enspace \text{(concavitat negativa: màxim)}
\\
\]

4.2 Recta tangent

Una altra aplicació de les derivades és trobar l’equació de la recta tangent en un punt.

Per a resoldre exercicis de la recta tangent farem:

  1. La primera derivada de la funció
  2. Si en donen la \[m\] trobarem \[x_0\]. Si ens donen \[x_0\] trobarem la m.
  3. Calcularem \[y_0\] substituint \[x_0\] a l’equació \[y=f(x)\]
  4. Escriurem l’equació de la recta tangent.

Exemple:

\[
y=x²+6x-6, \enspace m=2\\
1. y’=2x+6=m\\
2. 2x_0+6=2 \rightarrow x_0=-2\\
3. y_0=(x_0)²+6x_0-6=(-2)²+6*(-2)-6=-14\\
4. y-y_0=m*(x-x_0) \rightarrow \textbf {y+14=2*(x+2)}\\
\]

\[
y=x²+6x-6, \enspace x_0=-2\\
1. y’=2x_0+6=m\\
2. m=2*-2+6=2\\
3. y_0=(x_0)²+6x_0-6=(-2)²+6*(-2)-6=-14\\
4. y-y_0=m*(x-x_0) \rightarrow \textbf {y+14=2*(x+2)}\\
\]

4.3 Optimització

És trobar els valors de les variables de la funció objectiu (funció que es vol maximitzar o minimitzar) tenint en compte les restriccions (limitació dels valors de les variables).

Per a resoldre els exercicis d’optimització farem:

  1. Analitzant la geometria plantejarem l’equació de la funció objectiu i de la restricció.
  2. Aïllarem una de les incògnites de la restricció (la que faci els càlculs posteriors més senzills) i la substituïrem a la función objectiu.
  3. Farem la primera derivada de la funció objetiu i la igualarem a zero.
  4. Resoldrem l’equació que en resulti.
  5. Substituint el resultat a la restricció trobarem el valor de la segona incògnita.
  6. Calcularem el valor de la funció objectiu.
  7. Determinarem si és un màxim o un mínim.

Exemple:

Hem de determinar quins valors de la longitud dels catets d’un triangle rectangle fan que l’àrea sigui màxima tenint en compte que la hipotenusa ha de fer 12 unitats de longitud:

DERIVADES_OPTIMITZACIO
\[
1.\\
A=\frac {x*y}{2} \enspace \text{(funció objectiu)}\\
h²=x²+y² \enspace \text{(restricció)}\\
2.\\
x=\sqrt{h²-y²}\\
A=\frac{\sqrt{h²-y²}*y}{2}\\
3.\\
A’=-\frac{2y²}{4*\sqrt{h²-y²}}+\frac{\sqrt{(h²-y²)}}{2}=0\\
4.\\
-\frac{2y²}{\sqrt{h²-y²}}+\sqrt{(h²-y²}=0\\
\frac{y²}{2*\sqrt{h²-y²}}=\frac{\sqrt{(h²-y²}}{2}\\
y²=(h²-y²)\\
y=\frac{h}{\sqrt2}=\frac{12}{\sqrt{2}}\approx 8.5\\
5.\\
x=\sqrt{h²-y²}=\sqrt{12²-(\frac{12}{\sqrt 2})²}=\frac{12}{\sqrt{2}}\approx 8.5\\
6.\\
A=\frac{\frac{12}{\sqrt{2}} * \frac{12}{\sqrt{2}}}{2}=38u²\\
7.A'(8)>0,A'(9)<0 \enspace \text{(és un màxim).}
\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.

Anàlisi funcional

1. Definició

L’anàlisi matemàtic és la part de les matemàtiques que estudia les funcions.

Una funció és una una aplicació o correspondència \[f\] entre dos conjunts numèrics \[(X,Y) (f: X \mapsto Y)\].

Per a determinar el comportament d’una funció, analitzem de \[-\infty\] fins a \[+\infty\] diverses característiques que un cop interpretades conjuntament ens mostraran aquest comportament.

2. Característiques

2.1 Domini i recorregut

El domini són tots els punts del conjunt inicial \[X\] als quals els correspon un o més valors del conjunts d’arribada \[Y\] (codomini o recorregut). Quan a un punt del conjunt \[X\] no li correspon cap punt del conjunt \[Y\], aquest punt no pertany al domini de la funció (la fletxa puntejada del diagrama de Venn anterior és un punt que no pertany al domini de la funció \[f(x)\]).

Per a determinar el domini d’una funció hem d’analitzar-la per tal de esbrinar si hi ha algun punt \[x\] al qual no li correspongui cap imatge (\[y\]).

Les funcions més habituals són: a) Les polinòmiques, les racionals i les irracionals (\[y=\sqrt[n]{P(x)}\]).

  1. Polinòmiques: el domini de les funcions polinòmiques són tots els nombres reals \[Dom \, y=\{\forall \, x \in \mathbb{R}\}\]
  2. Racionals \[y=\frac{N(x)}{D(x)}\]: el domini de les funcions racionals son tots els nombre reals excepte els que fan el polinomi del denominador zero \[Dom \, y=\{\forall \, x \in \mathbb{R} / (D(x) \neq 0)\}\].
  3. Irracionals \[y=\sqrt[2n]{P(x)}\]: el domini de les funcions irracionals d’index de l’arrel parell, són tots els nombres reals excepte el que fan que el radicand sigui més petit que zero \[Dom \, y=\{\forall \, x \in \mathbb{R} / (P(x) \geq 0)\}\].

    Quan haguem resolt l’equació que resulta d’igualar el radicand a zero, haurem de determinar quin o quins dels intervals que divideixen la recta real són solució substituint un punt de cada interval: si la solució és negativa, l’interval no pertany al domini.

Exemples:

\[y= 4x³-2x²+8x-9\]

\[
y= \frac{x²+1}{x²-1}\\
x²-1=0\\
x=\pm1\\
Dom \, y=\{\forall \, x \in \mathbb{R} / x²-1 \neq 0)\}, \text {o bé}\\
Dom \, y=\{\forall \, x \in \mathbb{R} / x \neq \pm1\}
\]

\[
y= \sqrt{x²-9}\\
x²-9=0\\
x=\pm3\\
y(-10)=\sqrt{(-10)²-9}>0\\
y(0)=\sqrt{(0)²-9}<0\\
y(+10)=\sqrt{(+10)²-9}>0\\
Dom \, y=\{\forall \, x \in \mathbb{R} / x²-9 > 0)\}, \text {o bé}\\
Dom \, y=\{\forall \, x \in \mathbb{R} – (x \geq -3, x \geq 3)\}
\]

Per a determinar el recorregut calcularem la funció inversa, tot i que de vegades no es pot calcular. En aquest cas, s’ha de dibuixar la funció per a poder de determinar-lo.

Exemple:

\[
y=\frac{x²+1}{x²-1}\\
y(x²-1)=x²+1\\
yx²-x²=1+y\\
x²(y-1)=1+y\\
x=\sqrt{\frac{1+y}{y-1}}
\]

Per a que la funció \[x=f(y)\] existeixi, s’ha de complir que el radicand de l’arrel sigui posItiu i el denominador diferent de zero: \[\frac{1+y}{y-1} \geq 0, y-1 \neq 0\]

Per tant, la funció no té imatge en \[-1 \leq y<+1\].

\[Rec(y)=(-\infty,-1]U(+1, -\infty)\].

(Vegeu l’entrada Funcions elementals per a saber-ne més.)

2.2 Monotonia i punts singulars

Vegeu l’entrada d ‘Aplicacions de les derivades, Monotonia i punts singulars.

\[
y=\frac{x²+1}{x²-1}\\
y’=\frac{2x(x²-1)-2x(x²+1)}{(x²-1)^2}\\
y’=0=2x(x²-1)-2x(x²+1)=-4x\\
x=0\\
y(0)=-1\\[1cm]
y'(-10)=-4.-10>0 (creixent)\\
y'(+10)=-4.+10<0 (decreixent)\\
{Màxim (0,-1)}
\]

2.3 Curvatura i punts d’inflexió

Vegeu l’entrada d’Aplicacions de les derivades, Curvatura i punts d’inflexió.

\[
y=\frac{x²+1}{x²-1}\\
y’=-4x\\
y”=-4 \enspace (curvatura \enspace negativa)
\]

La funció no té punts d’inflexió.

2.4 Asímptotes

Una asímptota és una recta a la qual la funció s’aproxima infinitesimalment (“infinitesimal: quantitat infinitament petita”) sense arribar a tallar-la mai. La funció i l’asímptota són tangents a l’infinit.

Quan calculem les asímptotes verticals d’una funció, haurem de calcular-ne també els límits laterals per tal de d’esbrinar el sentit de la corba (\[+\infty, -\infty)\] a cada banda de l’asímptota.

2.4.1 Asímptota vertical

Definició: \[lim_{x \rightarrow a} f(x)= \infty\]

Exemple:

\[
y=\frac{x²+1}{x²-1}\\
lim_{x \rightarrow a} \frac{x²+1}{x²-1}=\infty\\
x²-1=0\\
x=\pm 1
\\[1cm]
lim_{x \to +1^{-}}\frac{x²+1}{x²-1}=\frac{(0.009)²+1}{(0.009)²-1}=-\infty\\
lim_{x \to +1^{+}}\frac{x²+1}{x²-1}=\frac{(1.001)²+1}{(1.001)²-1}=+\infty
\\[1cm]
lim_{x \to -1^{+}}\frac{x²+1}{x²-1}= \frac{(-0.009)²+1}{(-0.009)²-1}=-\infty\\
lim_{x \to -1^{-}}\frac{x²+1}{x²-1}=\frac{(-1.001)²+1}{(-1.001)²-1}=+\infty\\
\]

2.4.2 Asímptota horitzontal

Definició: \[lim_{x \rightarrow \infty} f(x)=a\]

Exemple:

\[
lim_{x \rightarrow \infty} \frac{x²+1}{x²-1}=+1\\
y=1
\]

2.4.3 Asímptota obliqua

Definició: \[lim_{x \rightarrow \infty} \frac{f(x)}{x}=m, \enspace lim_{x \rightarrow \infty} f(x)-m=n\]

Exemple:

\[
m=lim_{x \rightarrow \infty} {\frac{x²+1}{x²-1}}:{x}\\
lim_{x \rightarrow \infty} \frac{x²+1}{(x²-1)*x}\\
lim_{x \rightarrow \infty} \frac{x²+1}{(x³-x)}=0
\]

No hi ha asímptotes obliqües.

Un altre exemple:

\[
m=lim_{x \rightarrow \infty} {\frac{x²+1}{x}}:{x}\\
lim_{x \rightarrow \infty} \frac{x²+1}{(x)*x}\\
lim_{x \rightarrow \infty} \frac{x²+1}{(x²)}=1\\
n=lim_{x \rightarrow \infty} f(x)-m\\
lim_{x \rightarrow \infty} \frac{x²+1}{x}-1*x\\
lim_{x \rightarrow \infty} \frac{x²+1-1*x²}{x}\\
lim_{x \rightarrow \infty} \frac{1}{x}=0\\
\textbf {y=x}
\]

Vegeu l’entrada Límits i continuïtat per a saber-ne més.

2.5 Punts de tall

Anomenem punts de tall als punts en els quals la funció talla els eixos de coordenades.

2.5.1 Amb les abscisses

Quan una funció talla l’eix de les \[x\], \[y=0\].

Exemple:

\[
y=\frac{x²+1}{x²-1}\\
0=\frac{x²+1}{x²-1}\\
x²+1=0, x=\sqrt{-1}
\]

No hi ha punts de tall amb l’eix de les \[x\].

2.5.2 Amb les ordenades

Quan una funció talla l’eix de les \[y\], \[x=0\].

Exemple:

\[
y=\frac{x²+1}{x²-1}\\
y=\frac{0²+1}{0²-1}=-1\\
(0,-1)
\]

2.6 Signe de la funció

El signe de la funció és el signe positiu o negatiu que tenen les imatges de la funció en cada interval del domini.

Per a determinar-ne el signe, determinarem el signe de la imatge d’un punt qualsevol de cada interval del domini.

Exemple:

\[
y=\frac{x²+1}{x²-1}\\[1cm]
(-\infty,-1)\\
y(-10)=\frac{(-10)²+1}{(-10)²-1}>0\\[1cm]
(-1,+1)\\
y(0)=\frac{(0)²+1}{(0)²-1}<0\\[1cm]
(+1,+\infty)\\
y(+10)=\frac{(+10)²+1}{(+10)²-1}>0\\
\] \[
(-\infty,-1)U(+1,+\infty):+\\
(-1,+1):-
\]

2.7 Simetria

Analitzem dos tipus de simetria, la parella i la senars.

2.7.1 Simetria parella

Una funció té simetria parella si es simètrica respecte a l’eix \[x=0\]: \[f(x)=f(-x)\].

Exemple:

\[
y=\frac{x²+1}{x²-1}\\
f(x)=\frac{x²+1}{x²-1}\\
f(-x)=\frac{(-x)²+1}{(-x)²-1}=\frac{x²+1}{x²-1}\\
f(x)=f(-x) \enspace (Simetria \enspace parella).
\]

2.7.2 Simetria senars

Una funció té simetria senars si ho és respecte al punt \[(0,0)\]: \[f(x)=-f(-x)\].

Exemple:

\[
y=\frac{x²+1}{x}\\
f(x)=\frac{x²+1}{x}\\
-f(-x)=-\frac{(-x)²+1}{(-x)}=-\frac{x²+1}{(-x)}=\frac{x²+1}{x}\\
f(x)=-f(-x) \enspace (Simetria \enspace senars).
\]

2.8 Periodicitat

Una funció és periòdica si \[f(x)=f(x+T)\]. Tot i que hi ha més funcions periòdiques, considerarem sols les trigonomètriques.

3. Gràfica

Per a dibuixar la gràfica de la funció representarem les característiques que hem determinat en un sistema de coordenades:

Exemple:

\[y=\frac{x²+1}{x²-1}\]
  1. Domini: \[(-\infty,-1)U(-1,+1)U(+1,+\infty)\]
  2. Recorregut: \[(-\infty,-1]U(+1,+\infty) \]
  3. Monotonia/ Punts singulars: \[(-\infty,-1)U(-1,0) \uparrow, \enspace (0,+1)U(+1,+\infty) \downarrow/ \enspace M(0,-1)\]
  4. Curvatura/ Punts d’inflexió: \[Negativa/ \enspace No \enspace en \enspace té.\]
  5. Asímptotes: \[x=\pm1,y=+1\]
  6. Punts de tall: \[(0,-1)\]
  7. Signe: \[(-\infty,-1)U(+1,+\infty)>0, \enspace (-1,+1)<0 \]
  8. Simetria: \[Parella\]
  9. Periodicitat: \[No \enspace és \enspace periòdica\]
  • Tens dubtes? Vols saber-ne més? T’agradaria que publiquéssim algun tema del teu interès? Has trobat algun error?

    Envia’ns un comentari sense compromís i et respondrem tan aviat com ens sigui possible.