Archivo de etiquetas dinàmica

Porceedukat

Resolució d’un sistema de forces

Instruccions abans de començar

Per a resoldre exercicis de dinàmica, seguirem els següents passos en aquest ordre:

1. Fer el diagrama de blocs (dibuix).

2. Fer el diagrama de forces per a cada bloc (massa).

3. Plantejar el sistema d’equacions per a cada bloc (massa):

4. Resoldre el sistema d’equacions

Tenint en compte el diagrama de forces del punt 2, es plantejarà el sistema d’equacions de l’eix \(\sum F_x\), de l’eix \(\sum F_y\) i dels moments de gir \(\sum M\). 

A dinámica, cada sistema d’equacions de forces s’igualarà o bé a zero, o bé a \(m*a\) depenent de si el moviment resultant és accelerat o no. De la mateixa manera, l’equació del moments de gir s’igualarà a o bé a zero, o bé al moment resultant. 

És a dir:

\(\begin {cases}
\sum F_x: 0, m*a\\
\sum F_y: 0, m*a\\
\sum M: 0,M_{resultant}\\
\end {cases}\)

A estàtica, el sistema d’equacions és el d’una estructura sobre la qual apliquem una o més càrregues. En aquest cas, tant \(\sum F_x\), com \(\sum F_y\) com \(\sum M\) s’igualaran a zero perquè el sistema analitzat (l’estructura) ha d’estar en equilibri estàtic. 

És a dir:

\(\begin {cases}
\sum F_x: 0\\
\sum F_y:0\\
\sum M: 0\\
\end {cases}\)

En un pla inclinat

Pas 1.

Pas 2

DIAGRAM DE FORCES
Diagrama de forces del bloc 1
DIAGRAMA DE FORCES
Diagrama de forces del bloc 2

Pas 3

Aquest pas consisteix en plantejar els sistemes d’equacions dels diagrames de forces del pas 2.

Del bloc 1:

\(
\begin{cases}
\sum F_x=T-P_{1x}-f=m_1*a\\
T-P*sin(\alpha)-\mu*P*cos(\alpha)=m_1*a\\
T-m_1*g*sin(\alpha)-\mu*m_1*g*cos (\alpha)=m_1*a\\
T-m_1*g*[sin(\alpha)-\mu*cos(\alpha)]=m_1*a\\
T=m_1*a+m_1*g*[sin(\alpha)-\mu*cos(\alpha)]\\
\sum F_y=N-P_{1y}=0\\
N-m_1*g*cos (\alpha)=0\\
\end{cases}
\)

Del bloc 2:

\(
\\[1cm]
\begin{cases}
\sum F_y=T-P_2=-m_2*a\\
T=m_2*g-m_2*a= m_2*(g-a)\\
\end{cases}
\) \(
\\[1cm]
\Rightarrow m_1*a+m_1*g*[sin(\alpha)-\mu*cos (\alpha)]=m_2*(g+a)\\
a=\frac {m_1*g*[sin(\alpha)-\mu*cos (\alpha)]-m_2*g} {m_2-m_1}
\)

Fixeu-vos que el dibuix ia a a els sistemes d’equacions plantejats són sempre els mateixos amb petites variacions

Si en compte de pujar, el bloc baixa, canviaran els signe de l’acceleració \(a\) i de la força de fricció \(f\):

Si l’acceleració resultant és en sentit contrari \(-a\)\, llavors \( (3.1)\, \sum F_x = -m_1 * a, \enspace (3.2)\, \sum F_y = + m_2 * a \enspace \)

La força de fricció \( f \) també canviarà de signe (la força de fricció sempre és oposada al sentit del desplaçament). L’eix de les \( x \) sempre és l’eix de desplaçament.

Si sols tenim el bloc del pla inclinat, la tensió \(T\) desapareixerà i la reemplaçarem per una força \(F\).

D’un pèndol en un pla horitzontal

Per a què es produeixi un moviment circular hi ha d’haver una força en direcció al centre de gir (força centrípeta) que obligui al mòbil a girar.

Aquesta força és la resultant o força neta de les forces que actuen en el seu eix \(F_c=\sum F\). 

El sentit de la tensió \(T\) sempre és cap al centre de gir.

Pas 1

DIAGRAMA DE BLOCS PENDOL HORITZONTAL

Pas 2

PENDOL HORITZONTAL PAS 2.1
PENDOL HORITZONTAL PAS 2.2
\(
1. \sum F_x=F_c=T\\
T=m_1*\frac{v^2}{R}
\\[1cm]
2. \sum F_y=T-P=0\\
T=P=m_2*g\\
m_1*\frac{v^2}{R}=m_2*g\\
v=\sqrt{\frac{m_2*g*R}{m_1}}
\)

D’un pèndol en un pla vertical

Punt més baix

Pas 1

PENDOL VERTICAL PUNT MES BAIX

Pas 2

El diagrama de forces és sols el de l’eix vertical i en aquest cas és força evident.

Pas 3

\(\sum F_y=F_c=T-P\\
T=F_c+P=m_1*\frac{v^2}{R}+m_1*g
=
\\
m_1*(\frac{v^2}{R}+g)
\)

D’un pèndol en el punt més alt

Pas 1

pendol vertical punt mes alt

Pas 2

També en aquest cas el diagrama de forces és evident.

Pas 3

\(\sum F_y=F_c=T+P\\
T=F_c-P
=\\
m_1*\frac{v^2}{R}-m_1*g
=\\
m_1*(\frac{v^2}{R}-g)
\)

La velocitat mínima que ha de tenir l’objecte \(m\) en el punt més alt perquè no caigui és \((T=0)\):

\(\sum F_y=F_c=T+P\\
F_c=P\\
m_1*\frac{v^2}{R}=m_1*g\\
v=\sqrt{g*r}
\)

Punt del mig

Pas 1

PENDOL VERTICAL PUNT DEL MIG

Pas 2

Una altre vegada, el diagrama de forces és molt evident, però aquesta vegada és sobre les abcises.

Pas 3

\(
\sum F_x=F_c=T\\
T=m_1*\frac{v^2}{R}
\)

Porceedukat

Moment de gir

Instruccions abans de començar

Si apliquem una força sobre un objecte que està fix per un punt es crearà un moviment de rotació respecte a aquest punt (centre de rotació) que anomenem moment de gir.

Per a calcular el moment de gir que produeix una força, fem; M= F*r, F és la força perpendicular aplicada al braç de palanca i r és la distància fins al centre de rotació. La força parale·la al braç de palanca no fa girar la palanca, sinó que l’estira o la comprimeix. És a dir, que sols la forces perpendiculars creen moment de gir sobre la palanca:

En el cas de dues forces iguals de sentit oposat l’anomenem parell de forces. És el cas d’un volant:

El sentit del vector moment de gir segueix la regla de la mà dreta.

Porceedukat

Les lleis de Newton de la dinàmica

Instruccions abans de començar

1) Principi d’inèrcia:

INÈRCIA és la resistència d’un cos a canviar el seu estat de moviment quan no hi actua cap força neta.

2)  Llei fonamental de la dinámica:

Quan apliquem una força sobre un objecte, aquest objecte s’accelera de forma directament proporcional a la força aplicada i inversament proporcional a la massa de l’objecte:

\(a=1/m*F → F=m*a\)

3)  Principi d’acció i reacció:

Quan es fa força sobre un cos, aquest reacciona fent una força de igual magnitud però de sentir contrari. Aquestes dues forces, tot i ser de igual magnitud i de sentit contrari, no s’anul·len entre sí perquè tenen punts d’aplicació diferents.

CEEdukat Online! Primària - ESO - Batxillerat - Provés d'accés

A CEEdukat ara també fem classes online amb la mateixa qualitat i professionalitat que les presencials. També obrim els mesos de juliol i agost.